Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 1, pp 337–359 | Cite as

Colourants and opacifiers of mosaic glass tesserae from Khirbet al-Mafjar (Jericho, Palestine): addressing technological issues by a multi-analytical approach and evaluating the potentialities of thermoluminescence and optically stimulated luminescence dating

  • Sara Fiorentino
  • Mariangela Vandini
  • Tania Chinni
  • Michele Caccia
  • Marco Martini
  • Anna Galli
Original Paper

Abstract

The paper discusses data concerning the secondary manufacture technology of a set of opaque coloured early Islamic mosaic glass tesserae from the qasr of Khirbet al-Mafjar (Jericho, Palestine). Archaeological contextualisation of the site had allowed attributing these finds to the Umayyad occupational phase of the building, and an in-depth study of the composition of the glassy matrix had provided evidence of a double supply of glass from Egypt and the Syro-Palestinian coast occurring in the production of the base glass intended to be used for the manufacture of mosaic tesserae. Here, a multi-methodological approach has been carried out to characterise colourants and opacifiers: visible reflectance spectroscopy (VIS-RS), optical microscopy (OM), scanning electron microscopy coupled with energy dispersion analysis (SEM-EDS), micro-Raman spectroscopy (micro-Raman) and X-ray diffraction (XRD) were performed on the opaque tesserae. Moreover, either optically stimulated luminescence (OSL) or thermoluminescence (TL) protocols for luminescence dating were applied on selected samples, with the aim of relating luminescence properties with the geochemical features of the glass tesserae, in the perspective of deepening the studies towards the absolute dating, an unquestionable help to the stimulating challenge of investigating ancient glass manufacture. Tin-based, phosphorus-based and copper-based opacifiers were identified, and the achieved results suggest the use of the same opacifiers and colouring agents regardless of the different base glass. Furthermore, data obtained by TL and OSL protocols revealed useful and stimulating potentialities these techniques could have in dating opaque glasses.

Keywords

Early Islamic/Umayyad mosaic glass tesserae Archaeometry VIS-RS SEM-EDS Micro-Raman TL OSL 

Notes

Acknowledgements

The authors would like to thank the directors of the Jericho Mafjar Project, Prof. Donald Whitcomb (Oriental Institute University of Chicago, Department of Near Eastern Languages and Civilizations) and Prof. Hamdan Taha (Palestinian Department of Antiquities) for having authorised the present study. We are grateful to Dr. Enrico Cirelli for providing the samples. The authors are also grateful to Mathilde Patin for her kind collaboration on preliminary SEM-EDS analyses.

References

  1. Akridge DG, Benoit PH (2001) Luminescence properties of chert and some archaeological applications. J Archaeol Sci 28:143–151CrossRefGoogle Scholar
  2. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054.  https://doi.org/10.1016/j.biomaterials.2007.02.028 CrossRefGoogle Scholar
  3. Arletti R, Conte S, Vandini M et al (2011a) Florence baptistery: chemical and mineralogical investigation of glass mosaic tesserae. J Archaeol Sci 38:79–88.  https://doi.org/10.1016/j.jas.2010.08.012 CrossRefGoogle Scholar
  4. Arletti R, Dalconi MC, Quartieri S et al (2006a) Roman coloured and opaque glass: a chemical and spectroscopic study. Appl Phys A Mater Sci Process 83:239–245.  https://doi.org/10.1007/s00339-006-3515-2 CrossRefGoogle Scholar
  5. Arletti R, Quartieri S, Vezzalini G et al (2008) Archaeometrical analyses of glass cakes and vitreous mosaic tesserae from Messina (Sicily, Italy). J Non-Cryst Solids 354:4962–4969.  https://doi.org/10.1016/j.jnoncrysol.2008.07.020 CrossRefGoogle Scholar
  6. Arletti R, Quartieri S, Vezzalini G (2006b) Glass mosaic tesserae from Pompeii: an archeometrical investigation. Period di Mineral 75:25–38Google Scholar
  7. Arletti R, Vezzalini G, Fiori C, Vandini M (2011b) Mosaic glass from St Peter’s, Rome: manufacturing techniques and raw materials employed in late 16th-century Italian opaque glass. Archaeometry 53:364–386.  https://doi.org/10.1111/j.1475-4754.2010.00538.x CrossRefGoogle Scholar
  8. Bailiff IK (1994) The pre-dose technique. Radiat Meas 23:471–479CrossRefGoogle Scholar
  9. Bailiff IK, Haskell EH (1983) The use of the pre-dose technique for environmental dosimetry. Radiat Prot Dosim 6:245–248CrossRefGoogle Scholar
  10. Barber D, Freestone I, Moulding K (2010) Ancient copper red glasses: investigation and analysis by microbeam techniques. From Mine to Microsc – Adv Study Anc Technol 37:898–899.  https://doi.org/10.1016/j.jas.2009.11.021 CrossRefGoogle Scholar
  11. Basso E, Invernizzi C, Malagodi M et al (2014) Characterization of colorants and opacifiers in roman glass mosaic tesserae through spectroscopic and spectrometric techniques. J Raman Spectrosc 45:238–245.  https://doi.org/10.1002/jrs.4449 CrossRefGoogle Scholar
  12. Bayley J, Wilthew P (1986) Qualitative and semiquantitative analyses of glass beads. In: Proceedings of the 24th International Archaeometry Symposium. Smithsonian Institution Press, Washington DC, pp 55–62Google Scholar
  13. Bonnerot O, Ceglia A, Michaelides D (2015) Technology and materials of Early Christian Cypriot wall mosaics. Jasrep.  https://doi.org/10.1016/j.jasrep.2015.10.019
  14. Boschetti C, Henderson J, Evans J, Leonelli C (2016) Mosaic tesserae from Italy and the production of Mediterranean coloured glass (4rd century BCE–4th century CE). Part I: Chemical composition and technology. J Archaeol Sci Reports 7:303–311.  https://doi.org/10.1016/j.jasrep.2016.05.006 CrossRefGoogle Scholar
  15. Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta - Part A Mol Biomol Spectrosc 59:2247–2266.  https://doi.org/10.1016/S1386-1425(03)00069-6 CrossRefGoogle Scholar
  16. Brill RH (1970) The chemical interpretation of the texts. In: Barag D, Brill RH, Oppenheim D, von Saldern A (eds) Glass and glassmaking in ancient Mesopotamia. The Corning Museum of Glass, corning, New YorkGoogle Scholar
  17. Brill RH, Cahill ND (1988) A red opaque glass from Sardis and some thoughts on red opaques in general. J Glass Stud 30:16–27Google Scholar
  18. Cloutis E, Norman L, Cuddy M, Mann P (2016) Spectral reflectance (350-2500 nm) properties of historic artists’ pigments. II. Red-orange-yellow chromates, jarosites, organics, lead(-tin) oxides, sulphides, nitrites and antimonates. J Near Infrared Spectrosc 24:119–140.  https://doi.org/10.1255/jnirs.1207 CrossRefGoogle Scholar
  19. Colomban P, Schreiber HD (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36:884–890.  https://doi.org/10.1002/jrs.1379 CrossRefGoogle Scholar
  20. Colomban P, Tourni?? A, Caggiani MC, Paris C (2012) Pigments and enamelling/gilding technology of Mamluk mosque lamps and bottle. J Raman Spectrosc 43:1975–1984.  https://doi.org/10.1002/jrs.4101
  21. Colomban P, Tournié A, Ricciardi P (2009) Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J Raman Spectrosc 40:1949–1955.  https://doi.org/10.1002/jrs.2345 CrossRefGoogle Scholar
  22. Croveri P, Fragalà I, Ciliberto E (2010) Analysis of glass tesserae from the mosaics of the “Villa del Casale” near Piazza Armerina (Enna, Italy). Chemical composition, state of preservation and production technology. Appl Phys A Mater Sci Process 100:927–935.  https://doi.org/10.1007/s00339-010-5670-8 CrossRefGoogle Scholar
  23. Di Bella M, Quartieri S, Sabatino G et al (2014) The glass mosaics tesserae of “Villa del Casale” (Piazza Armerina, Italy): a multi-technique archaeometric study. Archaeol Anthropol Sci 6:345–362.  https://doi.org/10.1007/s12520-013-0172-1 CrossRefGoogle Scholar
  24. Eastaugh N, Walsh V, Chaplin T, Siddall R (2008) Pigment compendium. A dictionary and optical microscopy of historical pigments. Routledge, LondonGoogle Scholar
  25. Fiorentino S, Chinni T, Cirelli E et al (2017) Considering the effects of the Byzantine–Islamic transition: Umayyad glass tesserae and vessels from the qasr of Khirbet al-Mafjar (Jericho, Palestine). Archaeol Anthropol Sci:1–23.  https://doi.org/10.1007/s12520-017-0495-4
  26. Fiori C, Vandini M, Mazzotti V (2004) I colori del vetro antico. Il vetro musivo bizantino, Il Prato, Saonara (PD)Google Scholar
  27. Freestone I, Gorin-Rosen Y, Hughes M (2000) Primary glass from Israel and the production of glass in Late Antiquity and the Early Islamic period. In: Nenna M-D (ed) La route du verre. Ateliers primaires et secondaires du second millénaire av. J.-C. au Moyen Age. Travaux de la Maison de l’Orient Méditerranéèn, 33. Maison de l’Orient Méditerranéen Jean Pouilloux, Lion, pp 65–83Google Scholar
  28. Freestone IC, Bimson M, Buckton D (1988) Compositional categories of byzantine glass tesserae. In: Von Saldern A (ed) Annales du 11e Congres de l’Association Internationale pour l’Histoire du Verre, Bale, 29 août-3 septembre 1988. AIHV, Amsterdam, pp 271–280Google Scholar
  29. Freestone IC, Stapleton CP, Rigby V (2003) The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods. In: Entwistle C (ed) Through a glass brightly studies in Byzantine and Medieval Art and archaeology presented to David Buckton. Oxbow Books, pp 142–154Google Scholar
  30. Galli a, Martini M, Sibilia E, Fumagalli F (2012) The role of opacifiers in the luminescence of mosaic glass: characterization of the optical properties of cassiterite (SnO 2). Radiat Meas 47:814–819.  https://doi.org/10.1016/j.radmeas.2012.02.004 CrossRefGoogle Scholar
  31. Galli A, Martini M, Montanari C et al (2006a) TL of fine-grain samples from quartz-rich archaelogical ceramics: dosimetry using the 110 and 210°C TL peaks. Radiat Meas 41:1009–1014CrossRefGoogle Scholar
  32. Galli A, Martini M, Montanari C, Sibilia E (2003) The use of antimony and its implication for the luminescence properties of ancient mosaic tesserae. J Non-Cryst Solids 323:72–77.  https://doi.org/10.1016/S0022-3093(03)00292-8 CrossRefGoogle Scholar
  33. Galli A, Martini M, Sibilia E et al (2011) Dating ancient mosaic glasses by luminescence: the case study of San Pietro in Vaticano. Eur Phys J Plus 126:121–133CrossRefGoogle Scholar
  34. Galli A, Poldi G, Martini M et al (2006b) Study of blue colour in ancient mosaic tesserae by means of thermoluminescence and reflectance measurements. Appl Phys A Mater Sci Process 83:675–679.  https://doi.org/10.1007/s00339-006-3588-y CrossRefGoogle Scholar
  35. Galli A, Poldi G, Martini M, Sibilia E (2007) Thermoluminescence and visible reflectance spectroscopy applied to the study of blue-green mosaic silica-glass tesserae. Phys Status Solidi Curr Top Solid State Phys 4:950–953.  https://doi.org/10.1002/pssc.200673863 CrossRefGoogle Scholar
  36. Gliozzo E, Santagostino Barbone A, D’acapito F et al (2010) The Sectilia Panels Of faragola (Ascoli Satriano, Southern Italy): a multi-analytical study of the green, marbled (green and yellow), blue and blackish glass slabs. Archaeometry 52:389–415.  https://doi.org/10.1111/j.1475-4754.2009.00493.x CrossRefGoogle Scholar
  37. Gorin-Rosen Y (2000) The ancient glass industry in Israel: summary of the finds and new discoveries. Trav la Maison l’Orient méditerranéen 33:49–63Google Scholar
  38. Hatton GD, Shortland AJ, Tite MS (2008) The production technology of Egyptian blue and green frits from second millennium BC Egypt and Mesopotamia. J Archaeol Sci 35:1591–1604.  https://doi.org/10.1016/j.jas.2007.11.008 CrossRefGoogle Scholar
  39. Henderson J (2000) The science and archaeology of materials. Routledge, LondonGoogle Scholar
  40. Henderson J (2013) Ancient glass: an interdisciplinary exploration. University Press, CambridgeGoogle Scholar
  41. Hong DG, Kim MJ, Choi JH et al (2006) Equivalent dose determination of single aliquot regenerative-dose (SAR) protocol using thermoluminescence on heated quartz. Nucl Instruments Methods Phys Res B 243:174–178CrossRefGoogle Scholar
  42. Hughes MJ (1972) A technical study of opaque red glass of the Iron Age in Britain. In: Proceedings of the Prehistoric Society, vol 38, pp 98–107Google Scholar
  43. James L, Soproni E, Bjornolt B (2013) Mosaics by numbers. Some preliminary evidence from the Leverhulme Database. In: Entwistle C, L. J (eds) New light on old glass: recent research on byzantine mosaics and glass. The British Museum, London, pp 310–328Google Scholar
  44. Johnston-Feller R (2001) Color science in the examination of museum objects: nondestructive procedures. The Getty Conservation Institute, Los AngelesGoogle Scholar
  45. Madsen AT, Murray AS (2009) Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109:3–16CrossRefGoogle Scholar
  46. Marii F (2013) Glass tesserae from the Petra Church. In: Faulks S (ed) New light on old glass: recent research on byzantine mosaics and glass. The British museum, London, pp 11–24Google Scholar
  47. Marii F, Rehren T (2009) Archaeological coloured glass cakes and tesserae from the Petra Church. In: Janssens K et al (eds) Annales du 17e Congres del’Association Internationale pour l’Histoire du verre, pp 295–300Google Scholar
  48. Mason RB (2004) Shine like the sun: lustre-painted and associated pottery from the medieval Middle East. Royal Ontario Museum, TorontoGoogle Scholar
  49. Mason RB, Tite MS (1997) The beginning of tin-opacification of pottery glazesGoogle Scholar
  50. McKenzie J (2007) The architecture of Alexandria and Egypt: 300 BC - AD 700. Yale University Press, New HavenGoogle Scholar
  51. Merrifield M (1849) Original treatises on the arts of painting. Murray, LondonGoogle Scholar
  52. Mirti P, Davit P, Gulmini M (2002) Colourants and opacifiers in seventh and eighth century glass investigated by spectroscopic techniques. Anal Bioanal Chem 372:221–229.  https://doi.org/10.1007/s00216-001-1183-9 CrossRefGoogle Scholar
  53. Möncke D, Papageorgiou M, Winterstein-beckmann A, Zacharias N (2014) Roman glasses coloured by dissolved transition metal ions: redox-reactions, optical spectroscopy and ligand field theory. J Archaeol Sci 46:23–36.  https://doi.org/10.1016/j.jas.2014.03.007 CrossRefGoogle Scholar
  54. Moretti C, Hreglich S (2005) Tecniche di produzione dei vetri opachi impiegate dai vetrai veneziani tra il XV e il XX secolo. Riv della Stn Sper del Vetro 5:15–27Google Scholar
  55. Moropoulou A, Zacharias N, Delegou ET et al (2016) Analytical and technological examination of glass tesserae from Hagia Sophia. Microchem J 125:170–184.  https://doi.org/10.1016/j.microc.2015.11.020 CrossRefGoogle Scholar
  56. Nenna M-D, Picon M, Vichy M (2000) Ateliers primaires et secondaires en égypt a l’époque gréco-romaine. In: Nenna M-D (ed) La route du verre, Lyon, pp 97–112Google Scholar
  57. Neri E, Jackson M, O’Hea M et al (2017) Analyses of glass tesserae from Kilise Tepe: new insights into an early Byzantine production technology. J Archaeol Sci Reports 11:600–612.  https://doi.org/10.1016/j.jasrep.2016.12.036 CrossRefGoogle Scholar
  58. Penel G, Cau E, Delfosse C et al (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Dent Med Probl 40:37–43Google Scholar
  59. Poolton NRJ, Bøtter-Jensen L, Rink WJ (1995) An optically stimulated luminescence study of flint related to radiation dosimetry. Radiat Meas 24:551–555CrossRefGoogle Scholar
  60. Ricciardi P, Colomban P, Tournie A, Milande V (2009) Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries? J Raman Spectrosc 40:604–617.  https://doi.org/10.1002/jrs.2165 CrossRefGoogle Scholar
  61. Santagostino Barbone A, Gliozzo E, D’Aacpito F et al (2008) The Sectilia panels of Faragola (Ascoli Satriano, southern Italy): a multi-analytical study of the red, orange and yellow glass slabs. Archaeometry 50:451–473.  https://doi.org/10.1111/j.1475-4754.2007.00341.x CrossRefGoogle Scholar
  62. Schibille N, Degryse P, Corremans M, Specht CG (2012) Chemical characterisation of glass mosaic tesserae from sixth-century Sagalassos (south-west Turkey): chronology and production techniques. J Archaeol Sci 39:1480–1492.  https://doi.org/10.1016/j.jas.2012.01.020 CrossRefGoogle Scholar
  63. Schibille N, McKenzie J (2014) Glass tesserae from Hagios Polyeuktos, Costantinopole: their early Bizantine affiliations. In: Keller D, Price J, Jackson C (eds) Neighbours and successors of Rome. Oxbow books, Oxford, pp 114–127Google Scholar
  64. Serra CL, Silvestri A, Molin G (2009) Archaometric characterization. In: Lafli E (ed) Late Antique/Early Byzantine glass in the eastern Mediterranean. Ege Yayinlari, Izmir, pp 171–183Google Scholar
  65. Shugar AN (2000) Byzantine opaque red glass tesserae from Beit Shean, Israel. Archaeometry 42:375–384.  https://doi.org/10.1111/j.1475-4754.2000.tb00888.x CrossRefGoogle Scholar
  66. Silvestri A, Nestola F, Peruzzo L (2016) Multi-methodological characterisation of calcium phosphate in late-Antique glass mosaic tesserae. Microchem J 124:811–818.  https://doi.org/10.1016/j.microc.2015.10.026 CrossRefGoogle Scholar
  67. Silvestri A, Tonietto S, Molin G, Guerriero P (2014) The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of tesserae with copper- or tin-based opacifiers. J Archaeol Sci 42:51–67.  https://doi.org/10.1016/j.jas.2013.10.018 CrossRefGoogle Scholar
  68. Silvestri A, Tonietto S, Molin G, Guerriero P (2012) The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): archaeometric characterisation of tesserae with antimony- or phosphorus-based opacifiers. J Archaeol Sci 39:2177–2190.  https://doi.org/10.1016/j.jas.2013.10.018 CrossRefGoogle Scholar
  69. Suchanek W, Yashima M, Kakihana M, Yoshimura M (1997) β-Rhenanite (β-NaCaPO4) as weak Inerface for hydroxyapatite ceramics. Key Eng Mater 132–136:2025–2028.  https://doi.org/10.4028/www.scientific.net/KEM.132-136.2025 CrossRefGoogle Scholar
  70. Tite M, Pradell T, Shortland A (2008) Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: a reassessment. Archaeometry 50:67–84.  https://doi.org/10.1111/j.1475-4754.2007.00339.x CrossRefGoogle Scholar
  71. Turner WES, Rooksby HP (1959) A study of the opalising agents in opal glasses throughout three thousand four hundred years. Glas Berichte 32K:17–28Google Scholar
  72. Uboldi M, Verità M (2003) Scientific analyses of glasses from Late Antique and Early Medieval archaeological sites in northern Italy. J Glass Stud:115–137Google Scholar
  73. van der Werf I, Mangone A, Giannossa LC et al (2009) Archaeometric investigation of Roman tesserae from Herculaneum (Italy) by the combined use of complementary micro-destructive analytical techniques. J Archaeol Sci 36:2625–2634.  https://doi.org/10.1016/j.jas.2009.07.015 CrossRefGoogle Scholar
  74. Vandini M, Arletti R, Cirelli E (2014) Five centuries of mosaic glass at Saint Severus (Classe, Ravenna). OCNUS 22:91–108Google Scholar
  75. Verità M (2000) Tecniche di fabbricazione dei materiali musivi vitrei: indagini chimiche e mineralogiche. In: E. B, Gioffredi-Superbi F, Pagliarulo G (eds) Medieval mosaics: light, color, materials. Silvana Editoriale, Milano, pp 47–64Google Scholar
  76. Verità M (2010) Glass mosaic tesserae of the Neonian Baptistry in Ravenna: nature, origin, weathering causes and processes. In: Fiori C, Vandini M (eds) Ravenna Musiva 22–24 October 2009. Ante Quem, Bologna, pp 89–103Google Scholar
  77. Verità M, Profilo B, Vallotto M (2002) I mosaici della Basilica dei Santi Cosma e Damiano a Roma: studio analitico delle tessere vitree. Riv della Stn Sper del Vetro 5:13–24Google Scholar
  78. Verità M, Santopadre P, De Palma G (2017) Scientific investigation of glass mosaic tesserae from the 8th century AD archaeological site of Qusayr’ Amra (Jordan). Boll ICR 32:7–18Google Scholar
  79. Welter N, Schussler U, Kiefer W (2007) Characterisation of inorganic pigments in ancient glass beads by means of Raman microscpectroscopy, microprobe analysis and X-ray diffractometry. J Raman Spectrosc 38:113–121CrossRefGoogle Scholar
  80. Wypyski MT (2005) Technical analysis of glass mosaic tesserae from Amorium. Dumbart Oaks Pap 59:183–192CrossRefGoogle Scholar
  81. Wypyski MT, Becker I (2004) Glassmaking technology at Antioch. In: The Arts of Antioch. Princeton University Press, Worcester, pp 115–175Google Scholar
  82. Zacharias N, Beltsios K, Oikonomou A et al (2008) Thermally and optically stimulated luminescence of an archaeological glass collection from Thebes, Greece. J Non-Cryst Solids 354:761–767CrossRefGoogle Scholar
  83. Zhao HX, Li QH, Liu S, Gan FX (2013) Characterization of microcrystals in some ancient glass beads from china by means of confocal Raman microspectroscopy. J Raman Spectrosc 44:643–649.  https://doi.org/10.1002/jrs.4239 CrossRefGoogle Scholar
  84. Zimmerman J (1971) The radiation induced increase of thermoluminescence sensitivity of fired quartz. J Phys C 4:3277–3291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Cultural HeritageUniversity of BolognaRavennaItaly
  2. 2.Department of History and CulturesUniversity of BolognaBolognaItaly
  3. 3.CNR-IBFMSegrateItaly
  4. 4.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  5. 5.INFN TT_CHNETRomeItaly
  6. 6.CNR-IFNMilanItaly

Personalised recommendations