Archaeological and Anthropological Sciences

, Volume 11, Issue 2, pp 609–625 | Cite as

In situ non-invasive characterization of pigments and alteration products on the masonry altar of S. Maria ad Undas (Idro, Italy)

  • Lavinia de Ferri
  • Francesca Mazzini
  • Davide Vallotto
  • Giulio PojanaEmail author
Original Paper


A non-invasive characterization study has been performed and here presented for the first time on the masonry altar of S. Maria ad Undas, a parish medieval church on the Idro (Brescia, Italy) lakeshore. The determination of painting materials and of alteration products represent the one of the first steps, together with art history studies, of a wider project aimed to the valorization of the site. Images collected under UV light in fluorescence and reflectance mode provided useful information about the presence of organic residual materials attributable to the application of lost gilding details, while the readability of some particulars was greatly improved with respect to what observable in visible light. Moreover, near infrared (NIR) images led to hypothesize the presence of green earths in green painted areas. Raman and reflectance spectroscopy allowed the identification of the pigments and of several alteration products, such as plattnerite, which derived by the degradation of the lead-based ones, hydromagnesite, gypsum, and niter, as well as of carbon-based depositions.


Raman spectroscopy Multispectral imaging Medieval pigments Wall paintings 



Authors are grateful to Mgr. F. Pellegrini (Diocese of Brescia) for allowing access and carrying out the investigation and to Dr. M. Vallotti (Catholic University of Brescia). Authors are also indebted to Prof. P.P. Lottici (Department of Mathematical, Physical and Computer Sciences, University of Parma, Italy) for providing the Plattnerite standard.

Funding information

Authors gratefully acknowledge the financial support of Madatec srl (Pessano con Bornago, MI, Italy) in the present investigation.

Supplementary material

12520_2017_550_Fig15_ESM.gif (261 kb)
Online resource 1.

S. Maria ad Undas, Idro: a West and South sides; b East side: semicircular apse and bell tower. (GIF 261 kb)

12520_2017_550_MOESM1_ESM.tif (24.6 mb)
High-resolution image (TIFF 25226 kb)
12520_2017_550_Fig16_ESM.jpg (333 kb)
Online resource 2. S. Maria ad Undas, Idro, inner part: a single nave and transverse arches; b the abse and the altar (JPEG 333 KB)
12520_2017_550_MOESM2_ESM.wmv (183.7 mb)
Online resource 3. S. Maria ad Undas Church 3D rendering (WMV 188104 kb)
12520_2017_550_Fig17_ESM.jpg (1018 kb)
Online resource 4. Masonry altar in the S. Maria ad Undas church, Idro. Detail of the Christogram. (JPEG 1018 kb)
12520_2017_550_Fig18_ESM.gif (333 kb)
Online resource 5.

S. Maria ad Undas Altar and Saints attributed names. (GIF 333 kb)

12520_2017_550_MOESM3_ESM.tif (28.1 mb)
High-resolution image (TIFF 28778 kb)


  1. Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500CrossRefGoogle Scholar
  2. Aguayo T, Clavijo E, Eisner F, Ossa-Izquierdo C, Campos-Vallette MM (2011) Raman spectroscopy in the diagnosis of the wall painting History of Concepción, Chile. J Raman Spectrosc 42:2143–2148CrossRefGoogle Scholar
  3. Aibeo C, Castellucci EM, Matteini M, Sacchi B, Zoppi A, Lofrumento C (2008) A micro-Raman spectroscopy study of the formation of lead dioxide from lead white. In: Kroustallis S, Townsend JH, Bruquetas EC, Stijnman A, San Andres Moya M (eds) Art technology: sources and methods. Proceedings of the second symposium of the Art Technological Source Research Working Group. Archetype Publications, London, pp 138–140Google Scholar
  4. Aldrovandi A, Bertani D, Cetica M, Matteini M, Moles A, Poggi P, Tiano P (1988) Multispectral image processing of paintings. Stud Conserv 33:154–159Google Scholar
  5. Aliatis I, Bersani D, Campani E, Casoli A, Lottici PP, Mantovan S, Marino IG (2010) Pigments used in roman wall paintings in the Vesuvian area. J Raman Spectrosc 41:1537–1542CrossRefGoogle Scholar
  6. Angelini LG, Tozzi S, Bracci S, Quercioli F, Radicati B, Picollo M (2010) Characterization of traditional dyes of the Mediterranean area by non-invasive UV-vis-NIR reflectance spectroscopy. In: Conservation and the Eastern Mediterranean: contributions to the 2010 IIC Congress. The International Institute for Conservation of Historic and Artistic Works, Istanbul, pp.184–189Google Scholar
  7. Bacci M, Baronti S, Casini A, Lotti F, Picollo M (1992) Non destructive spectroscopic investigations on paintings using optical fibers. In: Vandiver PB, Druzik JR, Wheeler GS, Freestone IC (eds) Materials issues in art and archaeology III. Materials Research Society symposium proceedings. Materials Research Society, Pittsburgh, pp 265–283Google Scholar
  8. Bacci M, Picollo M, Radicati B, Casini A, Lotti F, Stefani L (1998) Non-destructive investigation of wall painting pigments by means of fibre-optic reflectance spectroscopy. In: Science and technology for cultural heritage 7: 73–81Google Scholar
  9. Bersani D, Berzioli M, Caglio S, Casoli A, Lottici PP, Medeghini L, Poldi G, Zannini P (2014) An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem J 114:80–88CrossRefGoogle Scholar
  10. Bersani D, Lottici PP (2016) Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectrosc 47:499–530CrossRefGoogle Scholar
  11. Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360CrossRefGoogle Scholar
  12. Best SP, Clark RJH, Daniels MAM, Porter CA, Withnall R (1995) Identification by Raman microscopy and visible reflectance spectroscopy of pigments on an Icelandic manuscript. Stud Conserv 40:31–40Google Scholar
  13. Bonneau A, Pearce DG, Pollard AM (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archaeol Sci 39:287–294CrossRefGoogle Scholar
  14. Brooker MH, Sunder S, Taylor P, Lopata VJ (1983) Infrared and Raman spectra and X-ray diffraction studies of solid lead(II) carbonates. Can J Chem 61:494–502CrossRefGoogle Scholar
  15. Bruni S, Caglio S, Guglielmi V, Poldi G (2008) The joined use of n.i. spectroscopic analyses—FTIR, Raman, visible reflectance spectrometry and EDXRF—to study drawings and illuminated manuscripts. Appl Phys A-Mater 92:103–108CrossRefGoogle Scholar
  16. Bruni S, Cariati F, Consolandi L, Galli A, Guglielmi V, Ludwig N, Milazzo M (2002) Field and laboratory spectroscopic methods for the identification of pigments in a northern Italian eleventh century fresco cycle. Appl Spectrosc 57:827–833CrossRefGoogle Scholar
  17. Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227CrossRefGoogle Scholar
  18. Burgio L, Clark RJH, Hark RR (2010) Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Nat Acad Sci 107:5726–5731CrossRefGoogle Scholar
  19. Cañveras JC, Sanchez-Moral S, Sloer V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240CrossRefGoogle Scholar
  20. Carcagnı P, Della Patria A, Fontana R, Greco M, Mastroianni M, Materazzi M, Pampaloni E, Pezzati L (2007) Multispectral imaging of paintings by optical scanning. Opt Laser Eng 45:360–367CrossRefGoogle Scholar
  21. Casadio F, Giangualano I, Pique F (2004) Organic materials in wall paintings: the historical and analytical literature. Stud Conserv 49:63–80CrossRefGoogle Scholar
  22. Cavaleri T, Giovagnolia A, Nervo M (2013) Pigments and mixtures identification by visible reflectance spectroscopy. Procedia Chem 8:45–54CrossRefGoogle Scholar
  23. Cheilakou E, Kartsonaki M, Koui M, Callet P (2009) A nondestructive study of the identification of pigments on monuments by colorimetry. Int J Microstruct Mat Prop 4:112–127Google Scholar
  24. Cheilakou E, Troullinos M, Koui M (2014) Identification of pigments on byzantine wall paintings from Crete (14th century AD) using non-invasive fiber optics diffuse reflectance spectroscopy (FORS). J Archaeol Sci 41:541–555CrossRefGoogle Scholar
  25. Clementi C, Nowik W, Romani A, Cibin F, Favaro G (2007) A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Anal Chim Acta 596:46–54CrossRefGoogle Scholar
  26. Correia AM, Clark RJH, Ribeiro MIM, Duarte MLTS (2007) Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884). J Raman Spectrosc 38:1390–1405CrossRefGoogle Scholar
  27. Cosentino A (2014a) Identification of pigments by multispectral imaging; a flowchart method. Herit Sci 2:8–20CrossRefGoogle Scholar
  28. Cosentino A (2014b) FORS spectral database of historical pigments in different binders. E-conserv J 2:53–65Google Scholar
  29. Cristini O, Kinowski C, Turrell S (2010) A detailed micro-Raman spectroscopic study of wall paintings of the period AD 100–200: effect of atmospheric conditions on the alteration of samples. J Raman Spectrosc 41:1410–1417CrossRefGoogle Scholar
  30. Cucci C, Picollo M, Vervat M (2012) Trans-illumination and trans-irradiation with digital cameras: potentials and limits of two imaging techniques used for the diagnostic investigation of paintings. J Cult Herit 13:83–88CrossRefGoogle Scholar
  31. Delaney JK, Walmsley E, Berrie BH, Fletcher CF (2003) Multispectral imaging of paintings in the infrared to detect and map blue pigments. In: Sackler AM (ed) Scientific examination of art: modern techniques in conservation and analysis. National Academy of Sciences, Washington, DC, pp 120–136Google Scholar
  32. Edwards HGM (2004) Probing history with Raman spectroscopy. Analyst 129:870–879CrossRefGoogle Scholar
  33. Edwards HGM, Farwell DW, Brooke CJ (2005) Raman spectroscopic study of a post-medieval wall painting in need of conservation. Anal Bioanal Chem 383:312–321CrossRefGoogle Scholar
  34. Elias M, Chartier C, Prévot G, Garay H, Vignaud C (2006) The colour of ochres explained by their composition. Sci Eng B-ADV 127:70–80CrossRefGoogle Scholar
  35. Frezzato F (2009) Ceninno Cennini: il libro dell’arte. Neri pozza editore, VicenzaGoogle Scholar
  36. Frost RL (2011) Raman spectroscopic study of the magnesium carbonate mineral hydromagnesite (Mg5[(CO3)4(OH)2]·4H2O). J Raman Spectrosc 42:1690–1694CrossRefGoogle Scholar
  37. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Min 20:1–18Google Scholar
  38. Giovannoni S, Matteini M, Moles A (1990) Studies and developments concerning the problem of altered lead pigments in WallPainting. Stud Conserv 35:21–25Google Scholar
  39. Gonçalves IG, Petter CO, Lepkoski Machado J (2012) Quantification of hematite and goethite concentrations in kaolin using diffuse reflectance spectroscopy: a new approach to Kubelka-Munk theory. Clay Clay Miner 60:473–483CrossRefGoogle Scholar
  40. Gonzalez V, Calligaro T, Wallez G, Eveno M, Toussaint K, Menu M (2016) Composition and microstructure of the lead white pigment in masters paintings using HR synchrotron XRD. Microchem J 125:43–49CrossRefGoogle Scholar
  41. Gonzalez V, Gourier D, Calligaro T, Toussaint K, Wallez G, Menu M (2017) Revealing the origin and history of lead-white pigments by their photoluminescence properties. Anal Chem 89:2909–2918CrossRefGoogle Scholar
  42. Gulmini M, Idone A, Diana E, Gastaldi D, Vaudan D, Aceto M (2013) Identification of dyestuffs in historical textiles: strong and weak points of a non-invasive approach. Dyes Pigments 98:136–145CrossRefGoogle Scholar
  43. Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899CrossRefGoogle Scholar
  44. Heise HM, Kuckuk R, Ojha AK, Srivastava A, Srivastavad V, Asthanac BP (2009) Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353CrossRefGoogle Scholar
  45. Hradil D, Grygar T, Hrušková M, Bezdička P, Lang K, Schneeweiss O, Chvátal M (2004) Green earth pigment from the Kadaň region, Czech Republic: use of rare Fe-rich smectite. Clays Clay Min 52:767–778CrossRefGoogle Scholar
  46. Irazola M, Olivares M, Castro K, Maguregui M, Martínez-Arkarazo I, Madariaga JM (2012) In situ Raman spectroscopy analysis combined with Raman and SEM-EDS imaging to assess the conservation state of 16th century wall paintings. J Raman Spectrosc 43:1676–1684CrossRefGoogle Scholar
  47. Irish DE, Davis AR (1968) Interactions in aqueous alkali metal nitrate solutions. Can J Chem 46:943–951CrossRefGoogle Scholar
  48. Jehlicka J, Vítek P, Edwards HGM, Hargreaves MD, Capoun T (2009) Fast detection of sulphateminerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J Raman Spectrosc 40:1082–1086CrossRefGoogle Scholar
  49. Kartsonaki M, Koui M, Callet P, Cheilakou E (2007) Non destructive identification of the colouring substances on the monuments studied by colorimetry. In: Proceedings of the 4th International Conference on NDT, Chania, 11th–14th OctoberGoogle Scholar
  50. Kotulanová E, Bezdicka P, Hradil D, Hradilová J, Svarcová S, Grygar T (2009) Degradation of lead-based pigments by salt solutions. J Cult Herit 10:367–378CrossRefGoogle Scholar
  51. Krishnamurti D (1956) Raman spectrum of magnesite. Proc Indian Acad Sc 43A:210–212CrossRefGoogle Scholar
  52. Lahlil S, Lebon M, Beck L, Rousselière H, Vignaud C, Reiche I, Menu M, Paillet P, Plassard F (2012) The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. J Raman Spectrosc 43:1637–1643CrossRefGoogle Scholar
  53. Laiz L, Recio D, Hennosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. SpringerLink, New York, pp 77–88CrossRefGoogle Scholar
  54. Lauwers D, Hutado AG, Tanevska V, Moens L, Bersani D, Vandenabeele P (2014) Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A-M 118:294–301CrossRefGoogle Scholar
  55. Legnaioli S, Lorenzetti G, Cavalcanti GH, Grifoni E, Marras L, Tonazzini A, Salerno E, Pallecchi P, Giachi G, Palleschi V (2013) Recovery of archaeological wall paintings using novel multispectral imaging approaches. Herit Sci 1:33–42CrossRefGoogle Scholar
  56. Legodi MA, de Waal D (2007) The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigments 74:161–168CrossRefGoogle Scholar
  57. Leona M, Winter J (2001) Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings. Stud. Conserv 46:153–162Google Scholar
  58. Liang H (2012) Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl Phys A-Mater 106:309–323CrossRefGoogle Scholar
  59. Liang H, Saunders D, Cupitt J, Lahanier C (2004) Multispectral imaging of easel wall paintings. In: Agnew N (ed) Conservation of ancient sites on the silk road: proceedings of the second international conference on the conservation of grotto sites. The Getty Conservation Institute, Los Angeles, pp 267–274Google Scholar
  60. Liu QS, Torrent J, Barrón V, Duan ZQ, Bloemendal J (2011) Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology. J Clay Miner 46:137–147CrossRefGoogle Scholar
  61. Maguregui M, Knutinen U, Castro K, Madariaga JM (2010) Raman spectroscopy as a tool to diagnose the impact and conservation state of Pompeian second and fourth style wall paintings exposed to diverse environments (House of Marcus Lucretius). J R Spectrosc 41:1400–1409CrossRefGoogle Scholar
  62. Martınez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) Evaluation of three different mobile Raman microscopes employed to study deteriorated civil building stones. J Raman Spectrosc 39:1018–1029CrossRefGoogle Scholar
  63. Mathew X, Enriquez JP, Mejía-García C, Contreras-Puente G, Cortes-Jacome MA, Toledo Antonio JA, Hays J, Punnoose A (2006) Structural modifications of SnO2 due to the incorporation of Fe into the lattice. J Appl Phys 100:073907-1–073907-7Google Scholar
  64. Mertes S, Dippel B, Schwarzenböck A (2004) Quantication of graphitic carbon in atmospheric aerosol particles by Raman spectroscopy and first application for the determination of mass absorption efficiencies. Aerosol Sci 35:347–361CrossRefGoogle Scholar
  65. Mestl G, Rosynek MP, Lunsford JH (1997) Decomposition of nitric oxide over barium oxide supported on magnesium oxide. 2. In situ Raman characterization of phases present during the catalytic reaction. J Phys Chem B 101:9321–9328CrossRefGoogle Scholar
  66. Montagnac G, Caracas R, Bobocioiu E, Vittoz F, Reynard B (2013) Anharmonicity of graphite from UV Raman spectroscopy to 2700 K. Carbon 54:68–75CrossRefGoogle Scholar
  67. Morris RV, Lauer HV Jr, Lawson CA, Gibson EK Jr, Nace GA, Stewart C (1985) Spectral and other physicochemical properties of submicron powders of hematite (−Fe2O3), Maghemite (7-Fe2O3), magnetite (Fe3O4), goethite (-FeOOH), and Lepidocrocite (7-FeOOH). J Geophys Res 90:3126–3144CrossRefGoogle Scholar
  68. Mosca S, Frizzi T, Pontone M, Alberti R, Bombelli L, Capogrosso V, Nevin A, Valentini G, Comelli D (2016) Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem J 124:775–784CrossRefGoogle Scholar
  69. Nakamura R, Tanaka Y, Ogata A, Naruse M (2009) Dye analysis of Shosoin textiles using excitation-emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques. Anal Chem 81:5691–5698CrossRefGoogle Scholar
  70. Nassau K (1996) The physics and chemistry of color: the fifteen causes of color. John Wiley & Sons, New YorkGoogle Scholar
  71. Pelagotti A, Del Mastio A, De Rosa A, Piva A (2008) Multispectral imaging of paintings. IEEE Signal Proc Mag 25:27–36CrossRefGoogle Scholar
  72. Perez-Rodriguez JL, Robador MD, Centeno MA, Siguenza B, Duran A (2014) Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers. Spectrochim Acta A-M 120:602–609CrossRefGoogle Scholar
  73. Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69Google Scholar
  74. Picollo M, Bacci M, Casini A, Lotti F, Porcinai S, Radicati B, L. Stefani (2002) Fiber optics reflectance spectroscopy: a non-destructive technique for the analysis of works of art. In: Optical sensors and microsystems: new concepts, materials, technologies, Martellucci S, Chester AN, Mignani AG (eds) Springer, pp. 259–265Google Scholar
  75. Poldi G, Caglio S (2013) Phthalocyanine identification in paintings by reflectance spectroscopy. a laboratory and in situ study. Opt Spectrosc 114:929–935CrossRefGoogle Scholar
  76. Potgieter-Vermaak SS, RHM G, Van Grieken R, Potgieter JH, Oujja M, Castillejo M (2005) Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta A-M 61:2460–2467CrossRefGoogle Scholar
  77. Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. SpringerLink, New York, pp 231–245CrossRefGoogle Scholar
  78. Rosado T, Gil M, Mirao J, Candeias A, Caldeira AT (2016) Darkening on lead-based pigments: microbiological contribution. COLOR Res Appl 41:294–298CrossRefGoogle Scholar
  79. Salvadori B, Errico V, Mauro M, Melnik E, Dei L (2003) Evaluation of gypsum and calcium oxalates in deteriorated mural paintings by quantitative FTIR spectroscopy. Spectrosc Lett 36:501–513CrossRefGoogle Scholar
  80. Seccamani R (1982) Relazione sulle condizioni conservative della Pieve di Idro, IdroGoogle Scholar
  81. Sidgwick NV (1950) The chemical elements and their compounds. Clarendon Press, OxfordGoogle Scholar
  82. Smith GD, Burgio L, Firth S, Clark RJH (2001) Laser-induced degradation of lead pigments with reference to Botticelli’s Trionfo d’Amore. Anal Chim Acta 440:185–188CrossRefGoogle Scholar
  83. Stanzani E, Bersani D, Lottici PP, Colomban PH (2016) Analysis of artist’s palette on a 16th century wood panel painting by portable and laboratory Raman instruments. Vib Spectrosc 85:62–70CrossRefGoogle Scholar
  84. Sun J, Wu Z, Cheng H, Zhang Z, Frost RL (2014) A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta A-M 117:158–162CrossRefGoogle Scholar
  85. Sze SK, Siddique N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atm Envir 35:561–568CrossRefGoogle Scholar
  86. Tang IN, Fung KH (1989) Characterization of inorganic salt particles by Raman spectroscopy. J Aerosol Sci 20:609–617CrossRefGoogle Scholar
  87. Torrent J, Barrón V (2003) The visible diffuse reflectance Spectrum in relation to the color and crystal properties of hematite. Clay Clay Miner 51:309–317CrossRefGoogle Scholar
  88. Vandenabeele P, Edwards HGM, Jehlicka J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628–2649CrossRefGoogle Scholar
  89. Vandenabeele P, Tate J, Moens L (2007) Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy. Anal Bioanal Chem 387:813–819CrossRefGoogle Scholar
  90. Vandenabeele P, von Bohlen A, Moens L, Klockenkamper R, Joukes F, Dewispelaere G (2000) Spectroscopic examination of two Egyptian masks: a combined method approach. Anal Lett 33:3315–3332CrossRefGoogle Scholar
  91. Welcomme E, Walter P, Bleuet P, Hodeau JL, Dooryhee E, Martinetto P, Menu M (2007) Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Appl Phys A Mater Sci Process 89:825–832CrossRefGoogle Scholar
  92. Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-ill at high pressures. Am Mineral 77:1158–1165Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lavinia de Ferri
    • 1
  • Francesca Mazzini
    • 1
  • Davide Vallotto
    • 1
  • Giulio Pojana
    • 1
    Email author
  1. 1.Department of Philosophy and Cultural HeritageCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations