Advertisement

Archaeological and Anthropological Sciences

, Volume 11, Issue 1, pp 293–319 | Cite as

On smelting cassiterite in geological and archaeological samples: preparation and implications for provenance studies on metal artefacts with tin isotopes

  • Daniel Berger
  • Gerhard Brügmann
  • Ernst Pernicka
Original Paper

Abstract

Tin isotope ratios may be a useful tool for tracing back the tin in archaeological metal artefacts (tin metal, bronze) to the geological source and could provide information on ancient smelting processes. This study presents the results of laboratory experiments, which reduced (smelted) synthetic stannic oxide, natural cassiterite and corroded archaeological tin and bronze objects. The overall aim of the study is to find a reliable method for the decomposition of tin ores and corrosion products in order to determine their tin isotopic composition, and to explore possible effects on the tin isotope ratios during pyrometallurgy. We focused on five methods of reduction at high temperatures (900–1100 °C): reduction with CO (plain smelting), reduction with KCN/CO (cyanide reduction), reduction with Na2CO3/CO, reduction with Cu/CO (‘cementation technique’) and reduction with CuO/CO (‘co-smelting’). The smelting products are analysed by means of optical and scanning electron microscopy as well as X-ray diffraction, while their isotope composition is determined with a high-resolution multi-collector mass spectrometer with inductively coupled plasma ionisation. The results show that all five methods decompose synthetic stannic oxide, cassiterite and corrosion products. Ultimately, reduction with KCN is the best solution for analysing tin ores and tin corrosion because the chemical processing is straightforward and it provides the most reproducible results. Reduction with Na2CO3 and copper is an alternative, especially for bronze corrosion, but it requires laborious chemical purification of the sample solutions. In contrast, evaporation of tin and incomplete alloying during plain smelting and co-smelting can cause considerable fractionation among smelting products (Δ124Sn = 0.10 ‰ (0.03 ‰ u−1)). A less precise and even inaccurate determination of the tin isotopic compositions of the tin ores would be the consequence. However, the results of this study help to evaluate the possible influence of the pyrometallurgical processes on the tin isotope composition of tin and bronze artefacts.

Keywords

Tin isotope analysis MC-ICP-MS Tin provenance Thermal reduction Stannic oxide Cassiterite Corrosion 

Notes

Acknowledgements

This study is part of the research project BRONZEAGETIN—Tin isotopes and the sources of Bronze Age tin in the Old World’ which is financed through an advanced grant (no. 323861) of the European Research Council (ERC) awarded to Ernst Pernicka. We would like to thank the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany, for providing us with the cassiterite concentrate from Rwanda and the chemical data. We further greatly appreciate the permission of using the archaeological samples given by Quanyu Wang, The British Museum, London, Great Britain (Salcombe and Erme Estuary ingots), Harald Meller, State Museum for Prehistory, Halle (Saale), Germany (palstave-hammer) and Michal Ernée, Czech Academy of Sciences, Praha, Czech Republic (tin ring Mikulovice). The analysis of the Mikulovice ring has been made possible with the support of the GAČR project (no. GA16-14855S) ‘Mobility and social status of the Early Bronze Age population on the Amber Road: The testimony of the cemetery in Mikulovice’. Janeta Marahrens supported the laboratory work for TIA and ICP-OES.

Supplementary material

12520_2017_544_MOESM1_ESM.docx (103 kb)
ESM 1 (DOCX 102 kb)

References

  1. Al-Kuhaili MF (2008) Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82(6):623–629CrossRefGoogle Scholar
  2. Balliana E, Aramendía M, Resano M, Barbante C, Vanhaecke F (2013) Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology. Anal Bioanal Chem 405(9):2973–2986CrossRefGoogle Scholar
  3. Baxter DC, Rodushkin I, Engstrom E, Malinovsky D (2006) Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom 21(4):427–430CrossRefGoogle Scholar
  4. Begemann F, Kallas K, Schmitt-Strecker S, Pernicka E (1999) Tracing ancient tin via isotope analyses. In: Hauptmann A, Pernicka E, Rehren T, Yalcin Ü (eds) The Beginnings of Metallurgy: Proceedings of the International Conference ‘The Beginnings of Metallurgy’, Bochum 1995, Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum, Bochum, pp 277–284Google Scholar
  5. Berger D, Figueiredo E, Brügmann G, Pernicka E (under review) Under review, Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts, J Archaeol SciGoogle Scholar
  6. Bourgarit D, Thomas N (2011) From laboratory to field experiments: shared experience in brass cementation. Hist Metall 45(1):8–16Google Scholar
  7. Brügmann G, Berger D, Pernicka E (2017) Tin stable isotopic composition in tin metals and tin minerals determined by MC-ICP-MS. Geostand Geoanal Res 41(3):437–448CrossRefGoogle Scholar
  8. Budd P, Haggerty R, Pollard AM, Scaife B, Thomas RG (1995) New heavy isotopes studies in archaeology. Isr J Chem 35(2):125–130CrossRefGoogle Scholar
  9. Caley ER (1932) The action of hydriodic acid on stannic oxide. J Am Chem Soc 54:3240–3243CrossRefGoogle Scholar
  10. Clayton R, Andersson P, Gale NH, Gillis C, Whitehouse M (2002) Precise determination of the isotopic composition of Sn using MC-ICP-MS. J Anal At Spectrom 17:1248–1256CrossRefGoogle Scholar
  11. De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000. Pure Appl Chem 75(6):683–800CrossRefGoogle Scholar
  12. Debroy T, Patankar A, Simkovich G (1990) Fuming of stannous oxide from silicate melts. Metall Trans B Pyrometall 20(3):449–454CrossRefGoogle Scholar
  13. Decroly C, Ghodsi M (1966) Étude du comportement de l'oxyde stannique vis-à-vis du fer et de ses oxydes sous pression réduite. Les Mémoires scientifiques de la Revue de métallurgie 63(2):109–125Google Scholar
  14. Decroly C, Ghodsi M, Winard R (1967) Recovery of tin by votalization of stannous oxide from slags or iron and calcium stannates. Trans Inst Min Metall Sect C 76:259–267Google Scholar
  15. Dunkle SE, Craig JR, Lusardi WR (2004) Romarchite and associated phases as common corrosion products on pewter artifacts from marine archaeological sites. Geoarchaeology 19(6):531–552CrossRefGoogle Scholar
  16. Earl B (1986) Melting tin in the west of England: part 2. J Hist Metall Soc 20(1):17–32Google Scholar
  17. Earl B (1994) Tin from the bronze age smelting viewpoint. J Hist Metall Soc 28(2):117–120Google Scholar
  18. El Deeb AB, Morsi IM, Atlam AA, Omar AA, Fathy WM (2015) Pyrometallurgical extraction of tin metal from the Egyptian cassiterite concentrate. Int J Sci Eng Res 6(3):54–64Google Scholar
  19. Figueiredo E, Lackinger A, Comendador Rey B, Silva RJC, Veiga JP, Mirão J (2017) An experimental approach for smelting tin ores from Northwestern Iberia. Mater Manuf Process 32(7–8):765–774CrossRefGoogle Scholar
  20. Gale NH (1997) The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry 39(1):71–82CrossRefGoogle Scholar
  21. Gillis C, Clayton R (2008) Tin and the Aegean in the bronze age. In: Tzachili I (ed) Aegean metallurgy in the Bronze Age: Proceedings of an International Symposium held at the University of Crete, Rethymnon, Greece, on November 19–21, 2004. Ta Pragmata Publications, Athens, pp 133–142Google Scholar
  22. Gillis C, Clayton RE, Pernicka E, Gale NH (2001) Tin in the Aegean bronze age. In: Polinger Foster K, Laffineur R (eds) Metron: Measuring the Aegean Bronze Age. Proceedings of the 9th international Aegean conference New Haven, Yale University, 18–21 April 2002. Aegaeum 24, Eupen, pp 103–110Google Scholar
  23. Grant MR (1999) The sourcing of Southern African tin artefacts. J Archaeol Sci 26(8):1111–1117CrossRefGoogle Scholar
  24. Griffin J (1827) A practical treatise on the use of the blowpipe in chemical and mineral analysis: Including a systematic arrangement of simple minerals, adapted to aid the student in his progress in mineralogy, by facilitating the discovery of the names of species, R. Griffin & Co., GlasgowGoogle Scholar
  25. Hall A (1980) The determination of total tin content of some geological materials by atomic absorption spectrophotometry. Chem Geol 30(1–2):135–142CrossRefGoogle Scholar
  26. Haustein M (2014) Isotopengeochemische Untersuchungen zu möglichen Zinnquellen der Bronzezeit Mitteleuropas, Forschungsberichte des Landesmuseums für Vorgeschichte Halle, 3, Landesmuseum für Vorgeschichte Halle (Saale), Halle (Saale)Google Scholar
  27. Haustein M, Pernicka E (2011) Die Verfolgung der bronzezeitlichen Zinnquellen Europas durch Zinnisotopie: Eine neue Methode zur Beantwortung einer alten Frage. Jahresschrift für Mitteldeutsche Vorgeschichte 92:387–418Google Scholar
  28. Haustein M, Gillis C, Pernicka E (2010) Tin isotopy—a new method for solving old questions. Archaeometry 52(5):816–832CrossRefGoogle Scholar
  29. Herdits H, Keen J, Steinberger M (1995) Wie kommt das Zinn in die Bronze? Ein Beitrag zur experimentellen Archäologie. Archäologie Österreichs 6(1):78–85Google Scholar
  30. Lee D-C, Halliday AN (1995) Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Process 146–147:35–46CrossRefGoogle Scholar
  31. Li G, You Z, Zhang Y, Rao M, Wen P, Guo Y, Jiang T (2014) Synchronous volatilization of Sn, Zn and As, and preparation of direct reduction iron (DRI) from a complex iron concentrate via CO reduction. J Miner Met Mater Soc 66(9):1701–1710CrossRefGoogle Scholar
  32. Ling J, Stos-Gale ZA, Grandin L, Billström K, Hjärthner-Holdar E, Persson P-O (2014) Moving metals II: Provenancing Scandinavian bronze age artefacts by lead isotope and elemental analyses. J Archaeol Sci 41:106–132CrossRefGoogle Scholar
  33. Marahrens J, Berger D, Brügmann G, Pernicka E (2016) Vergleich der stabilen Zinn-Isotopenzusammensetzung von Kassiteriten aus europäischen Zinn-Lagerstätten. In: Greiff S, Kronz A, Schlütter F, Prange M (eds) Archäometrie und Denkmalpflege 2016: Jahrestagung an der Georg-August-Universität Göttingen, 28. September bis 1. Oktober 2016, Metalla, Sonderheft 8. Deutsches Bergbau-Museum, Bochum, pp 190–193Google Scholar
  34. Marahrens J, Brügmann G, Berger D, Pernicka E (2017) The tin isotope fingerprint of tin deposits, Goldschmidt Abstracts. https://goldschmidtabstracts.info/abstracts/abstractView?id=2017003027. Accessed 14 September 2017
  35. Mason AH, Powell WG, Bankoff HA, Mathur R, Bulatović A, Filipović V, Ruiz J (2016) Tin isotope characterization of bronze artifacts of the central Balkans. J Archaeol Sci 69:110–117CrossRefGoogle Scholar
  36. Mathur R, Powell W, Mason A, Godfrey L, Yao J, Baker ME (2017) Preparation and measurement of cassiterite for Sn isotope analysis. Geostand Geoanal Res.  https://doi.org/10.1111/ggr.12174
  37. McNaughton NJ, Rosman KJR (1991) Tin isotope fractionation in terrestrial cassiterites. Geochim Cosmochim Acta 55(2):499–504CrossRefGoogle Scholar
  38. Meyer RJ, Pietsch EHE (1971) Gmelins Handbuch der anorganischen Chemie. Zinn, Teil A, WeinheimGoogle Scholar
  39. Muhly JD (1985) Sources of tin and the beginnings of bronze metallurgy. Am J Archaeol 89(2):275–291CrossRefGoogle Scholar
  40. Mulliken RS, Harkins WD (1922) The separation of isotopes: theory of resolution of isotopic mixtures by diffusion and similar processes. Experimental separation of mercury by evaporation in a vacuum. J Am Chem Soc 44(1):37–65CrossRefGoogle Scholar
  41. Nessel B, Brügmann G, Pernicka E (2015) Tin isotopes and the sources of tin in the early bronze age Únětice culture. In: Hunt Ortiz MA (eds) XV Congreso internacional sobre patrimonio geológico y minero. XIX Sesión científica de la sedpgym. Logrosán (Cáceres, Extremadura), 25–28 de septiembre de 2014, Logrosan, pp 11–28Google Scholar
  42. Nowell G, Clayton RE, Gale NH, Stos-Gale ZA (2002) Sources of tin—is isotopic evidence likely to help? In: Pernicka E, Bartelheim M (eds) Die Anfänge der Metallurgie in der alten Welt, Forschungen zur Archäometrie und Altertumswissenschaft 1. Marie Leidorf GmbH, Rahden/Westf, pp 291–302Google Scholar
  43. Padilla R, Sohn HY (1979) The reduction of stannic oxide with carbon. Metall Trans B 10(1):109–115CrossRefGoogle Scholar
  44. Pernicka E (1990) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges, Kiel, pp 135–147Google Scholar
  45. Piccardo P, Mille B, Robbiola L (2007) Tin and copper oxides in corroded archaeological bronzes. In: Dillmann P, Piccardo P, Matthiesen H, Beranger G (eds) Corrosion of metallic heritage artefacts: Investigation, conservation and prediction of long term behaviour. Woodhead Publications, Cambridge, pp 239–262Google Scholar
  46. Pulak C (1998) The Uluburun shipwreck: an overview. Int J Naut Archaeol 27(3):188–224CrossRefGoogle Scholar
  47. Rapp G, Rothe R, Jing Z (1999) Using neutron activation analysis to source ancient tin (cassiterite). In: Young SMM, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity. BAR International Series, 792, pp 153–162Google Scholar
  48. Robbiola L, Blengino J-M, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros Sci 40(12):2083–2111CrossRefGoogle Scholar
  49. Rovira S, Montero-Ruiz I, Renzi M (2009) Experimental co-smelting to copper-tin alloys. In: Kienlin TL, Roberts BW (eds) Metals and Societies: Studies in honour of Barbara S. Ottaway, Universitätsforschungen zur Prähistorischen Archäologie, 169. Habelt, Bonn, pp 407–414Google Scholar
  50. Schulze M, Ziegerick M, Horn I, Weyer S, Vogt C (2017) Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta B 130:26–34CrossRefGoogle Scholar
  51. Smith R (1996) An analysis of the processes for tin smelting. Bull Peak District Mines Hist Soc 13(2):91–99Google Scholar
  52. Tafel V, Wagenmann K (1953) Lehrbuch der Metallhüttenkunde. Band II. Blei, Zinn, Antimon, Zink, Kadmium, Hirzel, LeipzigGoogle Scholar
  53. Timberlake S (1994) An experimental tin smelt at Flag Fen. J Hist Metall Soc 28(2):121–128Google Scholar
  54. Turgoose S (1985) The corrosion of lead and tin: before and after excavation. In: Miles G, Pollard S (eds) Lead and tin: Studies in Conservation and Technology. UKIC occasional papers, 3, London, pp 15–26Google Scholar
  55. Wang Q, Strekopytov S, Roberts BW, Wilkin N (2016) Tin ingots from a probable bronze age shipwreck off the coast of Salcombe, Devon: Composition and microstructure. J Archaeol Sci 67:80–92CrossRefGoogle Scholar
  56. Wright PA (1982) Extractive metallurgy of tin. Elsevier, AmsterdamGoogle Scholar
  57. Yamazaki E, Nakai S, Yokoyama T, Ishihara S, Tang H (2013) Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochem J 47(1):21–35CrossRefGoogle Scholar
  58. Yamazaki E, Nakai S, Sahoo Y, Yokoyama T, Mifune H, Saito T, Chen J, Takagi N, Hokanishi N, Yasuda A (2014) Feasibility studies of Sn isotope composition for provenancing ancient bronzes. J Archaeol Sci 52:458–467CrossRefGoogle Scholar
  59. Yi W, Halliday AN, Lee D-C, Christensen JN (1995) Indium and tin in basalts, sulfides, and the mantle. Geochim Cosmochim Acta 59(24):5081–5090CrossRefGoogle Scholar
  60. Yi W, Budd P, McGill RAR, Young SMM, Halliday AN, Haggerty R, Scaife B, Pollard AM (1999) Tin isotope studies of experimental and prehistoric bronzes. In: Hauptmann A, Pernicka E, Rehren T, Yalcin Ü (eds) The Beginnings of Metallurgy: Proceedings of the International Conference ‘The Beginnings of Metallurgy’, Bochum 1995. Der Anschnitt, Beiheft 9. Deutsches Bergbau-Museum, Bochum, pp 285–290Google Scholar
  61. Zhang Y, Liu B, Su Z, Chen J, Li G, Jiang T (2015) Volatilization behavior of SnO2 reduced under different CO–CO2 atmospheres at 975 °C–1100 °C. Int J Miner Process 144:33–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Daniel Berger
    • 1
  • Gerhard Brügmann
    • 1
  • Ernst Pernicka
    • 1
    • 2
  1. 1.Curt-Engelhorn-Zentrum Archäometrie gGmbHMannheimGermany
  2. 2.Institut für GeowissenschaftenRuprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations