Overview of Juvenile localized scleroderma and its management

  • Suzanne C. LiEmail author
  • Rong-Jun Zheng
Review Article



Juvenile localized scleroderma (JLS) is a rare pediatric disease characterized by inflammation and skin thickening. JLS is associated with deep tissue and extracutaneous involvement that often results in functional impairment and growth disturbances. This article provides an overview of the disease with a focus on active features and treatment.

Data sources

We searched databases including PubMed, Elsevier and MedLine and Wanfang, reviewing publications from 2013 to 2019. Selected earlier publications were also reviewed.


Linear scleroderma is the most common JLS subtype. Several lines of evidence suggest that JLS is an autoimmune disease. Extracutaneous involvement is common and can present before the onset of skin disease. Multiple skin features are associated with disease activity, and activity can also manifest as arthritis, myositis, uveitis, seizures, and growth impairment. Systemic immunosuppressive treatment, commonly methotrexate with or without glucocorticoids, greatly improves outcome and is recommended for treating JLS patients with active disease and moderate or higher severity. Long term monitoring is needed because of the disease's chronicity and the high frequency of relapses off of treatment.


JLS is associated with a risk for disabling and disfiguring morbidity for the growing child. Identifying active disease is important for guiding treatment, but often difficult because of the paucity of markers and lack of a universal skin activity feature. More studies of JLS pathophysiology are needed to allow the identification of biomarkers and therapeutic targets. Comparative effectiveness treatment studies are also needed to work towards optimizing care and outcome.


Disease activity Extracutaneous involvement Juvenile localized scleroderma Morphea Pediatric scleroderma Treatment 



We thank the patients and their parents for their participation in research studies, and willingness to share their photographs.

Author contributions

SCL conceived of the idea of the manuscript. R-JZ wrote the first draft. Both the authors worked on revising it and approved the final manuscript.



Compliance with ethical standards

Ethical approval

The original source of figures and photographs not supplied by the author are acknowledged, and permission was obtained for their use. Patients consented to the use of their photographs for scientific publication.

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directed or indirectly to the subject of this article.


  1. 1.
    Succaria F, Kurban M, Kibbi A, Abbas O. Clinicopathological study of 81 cases of localized and systemic scleroderma. J Eur Acad Dermatol Venereol. 2013;27:e191–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Fleischmajer R, Gay S, Meigel WN, Perlish JS. Collagen in the cellular and fibrotic stages of scleroderma. Arthritis Rheum. 1978;21:418–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Torres J, Sánchez J. Histopathologic differentiation between localized and systemic scleroderma. Am J Dermatopathol. 1998;20:242–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Zulian F, Athreya B, Laxer R, Nelson A, Feitosa de Oliveira S, Punaro M, et al. Juvenile localized scleroderma: clinical and epidemiological features in 750 children. An international study. Rheumatology. 2006;45:614–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Christen-Zaech S, Hakim MD, Afsar FS, Paller AS. Pediatric morphea (localized scleroderma): review of 136 patients. J Am Acad Dermatol. 2008;59:385–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Leitenberger J, Cayce R, Haley R, Adams-Huei B, Bergstresser P, Jacobe H. Distinct autoimmune syndromes in morphea. Arch Dermatol. 2009;145:545–50.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jacobe H, Ahn C, Arnett F, Reveille J. Major histocompatibility complex class i and class ii alleles may confer susceptibility to or protection against morphea. Arthritis Rheumatol. 2014;66:3170–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Wu E, Li S, Torok K, Virkud Y, Fuhlbrigge R, Rabinovich E, et al. Baseline description of the juvenile localized scleroderma subgroup from the childhood arthritis and rheumatology research alliance legacy registry. ACR Open Rheumatol. 2019;1:119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Khatri S, Torok KS, Mirizio E, Liu C, Astakhova K. Autoantibodies in morphea: an update. Front Immunol. 2019;10:1487.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zulian F, Vallongo C, Woo P, Russo R, Ruperto N, Harper J, et al. Localized scleroderma in childhood is not just a skin disease. Arthritis Rheum. 2005;52:2873–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Torok KS, Li SC, Jacobe HM, Taber SF, Stevens AM, Zulian F, et al. Immunopathogenesis of pediatric localized scleroderma. Front Immunol. 2019;10:908.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Saracino AM, Denton CP, Orteu CH. The molecular pathogenesis of morphoea: from genetics to future treatment targets. Br J Dermatol. 2017;177:34–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Magee K, Kelsey C, Kurzinski K, Ho J, Mlakar L, Feghali-Bostwick C, et al. Interferon-gamma inducible protein-10 as a potential biomarker in localized scleroderma. Arthritis Res Ther. 2013;15:R188.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Torok K, Kurzinski K, Kelsey C, Yabes J, Magee K, Vallejo A, et al. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokines profiles. Semin Arthritis Rheum. 2015;45:284–93.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    O’Brien J, Rainwater Y, Malviya N, Cyrus N, Auer-Hackenberg L, Hynan L, et al. Transcriptional and cytokine profiles identify cxcl9 as a biomarker of disease activity in morphe. J Invest Dermatol. 2017;137:1663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mertens J, de Jong E, van den Hoogen L, Wienke J, Thurlings R, Seyger M, et al. The identification of ccl18 as biomarker of disease activity in localized scleroderma. J Autoimmun. 2019;10:86–93.CrossRefGoogle Scholar
  17. 17.
    Magro C, Halteh P, Olson L, Kister I, Shapiro L. Linear scleroderma “en coup de sabre” with extensive brain involvement—clinicopathologic correlations and response to anti-interleukin-6 therapy. Orphanet J Rare Dis. 2019;14:110.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Grabell D, Hsieh C, Andrew R, Martires K, Kim A, Vasquez R, et al. The role of skin trauma in the distribution of morphea lesions: a cross-sectional survey of the morphea in adults and children cohort iv. J Am Acad Dermatol. 2014;71:493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Li S, Torok K, Rabinovich CE, Dedeoglu F, Ferguson PJ, Hong SD, et al. Initial results from a pilot comparative effectiveness study of three methotrexate-based consensus treatment plans for juvenile localized scleroderma. J Rheumatol. 2019 (in press).Google Scholar
  20. 20.
    Marzano AV, Menni S, Parodi A, Borghi A, Fuligni A, Fabbri P, et al. Localized scleroderma in adults and children. Clinical and laboratory investigations on 239 cases. Eur J Dermatol. 2003;13:171–6.PubMedGoogle Scholar
  21. 21.
    Tollefson M, Witman P. En coup de sabre morphea and Parry–Romberg syndrome: a retrospective review of 54 patients. J Am Acad Dermatol. 2007;56:257–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Schoch JJ, Schoch BS, Werthel JD, McIntosh AL, Davis DMR. Orthopedic complications of linear morphea: implications for early interdisciplinary care. Pediatr Dermatol. 2018;35:43–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Weibel L, Laguda B, Atherton D, Harper JI. Misdiagnosis and delay in referral of children with localized scleroderma. Br J Dermatol. 2011;165:1308–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Piram M, McCuaig CC, Saint-Cyr C, Marcoux D, Hatami A, Haddad E, et al. Short- and long-term outcome of linear morphoea in children. Br J Dermatol. 2013;169:1265–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Herrick A, Ennis H, Bhushan M, Silman A, Baildam E. Incidence of childhood linear scleroderma and systemic sclerosis in the UK and Ireland. Arthritis Care Res. 2010;62:213–8.CrossRefGoogle Scholar
  26. 26.
    Hawley DP, Baildam EM, Amin TS, Cruikshank MK, Davidson JE, Dixon J, et al. Access to care for children and young people diagnosed with localized scleroderma or juvenile SSC in the UK. Rheumatology (Oxford). 2012;51:1235–9.CrossRefGoogle Scholar
  27. 27.
    Peterson L, Nelson A, Su W, Mason T, O’Fallon W, Gabriel S. The epidemiology of morphea (localized scleroderma) in Olmstead county 1960–1993. J Rheumatol. 1997;24:73–80.PubMedGoogle Scholar
  28. 28.
    Li SC. Scleroderma in children and adolescents: localized scleroderma and systemic sclerosis. Pediatr Clin North Am. 2018;65:757–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Florez-Pollack S, Kunzler E, Jacobe HT. Morphea: current concepts. Clin Dermatol. 2018;36:475–86.PubMedCrossRefGoogle Scholar
  30. 30.
    Laxer RM, Zulian F. Localized scleroderma. Curr Opin Rheumatol. 2006;18:606–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Weibel L, Harper JI. Linear morphoea follows Blaschko’s lines. Br J Dermatol. 2008;159:175–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Happle R. The lines of Blaschko: a developmental pattern visualizing functional X-chromosome mosaicism. Curr Probl Derm. 1987;17:5–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Diaz-Perez JL, Connolly SM, Winkelmann RK. Disabling pansclerotic morphea of children. Arch Dermatol. 1980;116:169–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Wollina U, Buslau M, Heinig B, Petrov I, Unger E, Kyriopoulou E, et al. Disabling pansclerotic morphea of childhood poses a high risk of chronic ulceration of the skin and squamous cell carcinoma. Int J Low Extrem Wounds. 2007;6:291–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Soh HJ, Samuel C, Heaton V, Renton WD, Cox A, Munro J. Challenges in the diagnosis and treatment of disabling pansclerotic morphea of childhood: case-based review. Rheumatol Int. 2019;39:933–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Tokachjiov S, Patel N, Tollefson M. Progressive hemifacial atrophy: a review. Orphanet J Rare Dis. 2015;10:39.CrossRefGoogle Scholar
  37. 37.
    Doolittle D, Lehman V, Schwartz K, Wong-Kisiel L, Lehman J, Tollefson M. CNS imaging findings associated with Parry–Romberg syndrome and en coup de sabre: correlation to dermatologic and neurologic abnormalities. Neuroradiology. 2015;57:21–34.PubMedCrossRefGoogle Scholar
  38. 38.
    De Somer L, Morren MA, Muller PC, Despontin K, Jansen K, Lagae L, et al. Overlap between linear scleroderma, progressive facial hemiatrophy and immune-inflammatory encephalitis in a paediatric cohort. Eur J Pediatr. 2015;174:1247–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Chiu YE, Vora S, Kwon EK, Maheshwari M. A significant proportion of children with morphea en coup de sabre and Parry–Romberg syndrome have neuroimaging findings. Pediatr Dermatol. 2012;29:738–48.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kreuter A, Mitrakos G, Hofmann SC, Lehmann P, Sticherling M, Krieg T, et al. Localized scleroderma of the head and face area: a retrospective cross-sectional study of 96 patients from 5 German tertiary referral centres. Acta Derm Venereol. 2018;98:603–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Kister I, Inglese M, Laxer R, Herbert J. Neurologic manifestations of localized scleroderma. A case report and literature review. Neurology. 2008;71:1538–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Klimiec E, Klimkowicz-Mrowiec A. Mild cognitive impairment as a single sign of brain hemiatrophy in patient with localized scleroderma and Parry–Romberg syndrome. Neurol Neurochir Pol. 2016;50:215–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Amaral TN, Marques Neto JF, Lapa AT, Peres FA, Guirau CR, Appenzeller S. Neurologic involvement in scleroderma en coup de sabre. Autoimmune Dis. 2012;2012:719685.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zannin M, Martini G, Athreya B, Russo R, Higgins G, Vittadello F, et al. Ocular involvement in children with localised scleroderma: a multi-centre study. Br J Opthalmol. 2007;91:1311–4.CrossRefGoogle Scholar
  45. 45.
    Bucher F, Fricke J, Neugebauer A, Cursiefen C, Heindl LM. Ophthalmological manifestations of Parry–Romberg syndrome. Surv Ophthalmol. 2016;61:693–701.PubMedCrossRefGoogle Scholar
  46. 46.
    Lenassi E, Vassallo G, Kehdi E, Chieng AS, Ashworth JL. Craniofacial linear scleroderma associated with retinal telangiectasia and exudative retinal detachment. J AAPOS. 2017;21:251–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Trainito S, Favero L, Martini G, Pedersen T, Favero V, Herlin T, et al. Odontostomatologic involvement in juvenile localised scleroderma of the face. J Paediatr Child Health. 2012;48:572–6.PubMedCrossRefGoogle Scholar
  48. 48.
    You KH, Baik HS. Orthopedic and orthodontic treatment of Parry–Romberg syndrome. J Craniofac Surg. 2011;22:970–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Al-Aizari NA, Azzeghaiby SN, Al-Shamiri HM, Darwish S, Tarakji B. Oral manifestations of Parry–Romberg syndrome: a review of literature. Avicenna J Med. 2015;5:25–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hørberg M, Lauesen S, Daugaard-Jensen J, Kjaer I. Linear scleroderma en coup de sabre including abnormal dental development. Eur Arch Paediatr Dent. 2015;16:227–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Canas CA, Orozco JL, Paredes AC, Bonilla-Abadia F. Successful treatment of hemifacial myokymia and dystonia associated to linear scleroderma “en coup de sabre” with repeated botox injections. Case Rep Med. 2012;2012:691314.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zulian F, Culpo R, Sperotto F, Anton J, Avcin T, Baildam EM, et al. Consensus-based recommendations for the management of juvenile localised scleroderma. Ann Rheum Dis. 2019;78:1019–24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Herrick A, Ennis H, Bhushan M, Silman A, Baildam E. Clinical features of childhood localized scleroderma in an incidence cohort. Rheumatol. 2011;50:1865–8.CrossRefGoogle Scholar
  54. 54.
    Vancheeswaran R, Black C, David J, Hasson N, Harper JI, Atherton D, et al. Childhood-onset scleroderma. Arthritis Rheum. 1996;39:1041–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Arkachaisri T, Fertig N, Pino S, Medsger T Jr. Serum autoantibodies and their clinical associations in patients with childhood- and adult-onset linear scleroderma. A single-center study. J Rheumatol. 2008;35:2439–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Sathornsumetee S, Schanberg L, Rabinovich E, Lewis D Jr, Weisleder P. Parry–Romberg syndrome with fatal brain stem involvement. J Pediatr. 2005;146:429–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Li SC, Li X, Pope E, Stewart K, Higgins GC, Rabinovich CE, et al. New features for measuring disease activity in pediatric localized scleroderma. J Rheumatol. 2018;45:1680–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Arkachaisri T, Vilaiyuk S, Li S, O’Neil KM, Pope E, Higgins GC, et al. The localized scleroderma skin severity index and physician global assessment of disease activity: a work in progress toward development of localized scleroderma outcome measures. J Rheumatol. 2009;36:2819–29.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Arkachaisri T, Vilaiyuk S, Torok KS, Medsger TA Jr. Development and initial validation of the localized scleroderma skin damage index and physician global assessment of disease damage: a proof-of-concept study. Rheumatology (Oxford). 2010;49:373–81.CrossRefGoogle Scholar
  60. 60.
    Kelsey CE, Torok KS. The localized scleroderma cutaneous assessment tool: responsiveness to change in a pediatric clinical population. J Am Acad Dermatol. 2013;69:214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Torok KS, Arkachaisri T. Methotrexate and corticosteroids in the treatment of localized scleroderma: a standardized prospective longitudinal single-center study. J Rheumatol. 2012;39:286–94.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Teske NM, Jacobe HT. Using the Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) to classify morphoea by severity and identify clinically significant change. Br J Dermatol. 2019. Scholar
  63. 63.
    Li SC, Torok KS, Pope E, Dedeoglu F, Hong S, Jacobe HT, et al. Development of consensus treatment plans for juvenile localized scleroderma: a roadmap toward comparative effectiveness studies in juvenile localized scleroderma. Arthritis Care Res (Hoboken). 2012;64:1175–85.Google Scholar
  64. 64.
    Zulian F, Martini G, Vallongo C, Vittadello F, Falcini F, Patrizi A, et al. Methotrexate treatment in juvenile localized scleroderma: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2011;63:1998–2006.PubMedCrossRefGoogle Scholar
  65. 65.
    Martini G, Murray K, Howell KJ, Harper J, Atherton D, Woo P, et al. Juvenile-onset localized scleroderma activity detection by infrared thermography. Rheumatol. 2002;41:1178–82.CrossRefGoogle Scholar
  66. 66.
    Schanz S, Fierlbeck G, Ulmer A, Schmatzing M, Kümmeürle-Deschner J, Claussen C, et al. Localized scleroderma: MR findings and clinical features. Radiology. 2011;260:817–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Schanz S, Henes J, Ulmer A, Kotter I, Fierlbeck G, Claussen CD, et al. Response evaluation of musculoskeletal involvement in patients with deep morphea treated with methotrexate and prednisolone: a combined MRI and clinical approach. AJR Am J Roentgenol. 2013;200:W376–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Maloney E, Menashe SJ, Iyer RS, Ringold S, Chakraborty AK, Ishak GE. The central nervous system manifestations of localized craniofacial scleroderma: a study of 10 cases and literature review. Pediatr Radiol. 2018;48:1642–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Constantin T, Foeldvari I, Pain C, Pálinkás A, Höger P, Moll M, et al. Development of minimum standards of care for juvenile localized scleroderma. Eur J Pediatr. 2018;177:961–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Careta MF, Leite Cda C, Cresta F, Albino J, Tsunami M, Romiti R. Prospective study to evaluate the clinical and radiological outcome of patients with scleroderma of the face. Autoimmun Rev. 2013;12:1064–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Kreuter A, Gambichler T, Breuckmann F, Rotterdam S, Freitag M, Stuecker M, et al. Pulsed high-dose corticosteroids combined with low-dose methotrexate in severe localized scleroderma. Arch Dermatol. 2005;141:847–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Li S, Liebling MS. The use of doppler ultrasound to evaluate lesions of localized scleroderma. Curr Rheumatol Rep. 2009;11:205–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Li SC, Liebling MS, Haines KA, Weiss JE, Prann A. Initial evaluation of an ultrasound measure for assessing the activity of skin lesions in juvenile localized scleroderma. Arthritis Care Res (Hoboken). 2011;63:735–42.CrossRefGoogle Scholar
  74. 74.
    Hoffman K, Gerbaulet U, el-Gammal S, Altmeyer P. 20-MHz B-mode ultrasound in monitoring the course of localized scleroderma (morphea). Acta Derm Venereol (Stockh). 1991;164:3–16.Google Scholar
  75. 75.
    Wortsman X, Wortsman J, Sazunic I, Carreno L. Activity assessment in morphea using color doppler ultrasound. J Am Acad Dermatol. 2011;65:942–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Nezafati K, Cayce R, Susa J, Setiawan A, Tirkes T, Bendeck S, et al. 14-MHz ultrasonography as an outcome measure in morphea (localized scleroderma). Arch Dermatol. 2011;147:1112–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Li SC, Liebling MS, Haines KA. Ultrasonography is a sensitive tool for monitoring localized scleroderma. Rheumatology. 2007;46:1316–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Martini G, Fadanelli G, Agazzi A, Vittadello F, Meneghel A, Zulian F. Disease course and long-term outcome of juvenile localized scleroderma: experience from a single pediatric rheumatology centre and literature review. Autoimmun Rev. 2018;17:727–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Li SC, Feldman BM, Higgins GC, Haines KA, Punaro MG, O’Neil KM. Treatment of pediatric localized scleroderma: results of a survey of north american pediatric rheumatologists. J Rheumatol. 2010;37:175–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Hawley DP, Pain CE, Baildam EM, Murphy R, Taylor AE, Foster HE. United kingdom survey of current management of juvenile localized scleroderma. Rheumatology (Oxford). 2014;53:1849–54.CrossRefGoogle Scholar
  81. 81.
    Kreuter A, Krieg T, Worm M, Wenzel J, Moinzadeh P, Kuhn A, et al. German guidelines for the diagnosis and therapy of localized scleroderma. J Dtsch Dermatol Ges. 2016;14:199–216.PubMedCrossRefGoogle Scholar
  82. 82.
    Knobler R, Moinzadeh P, Hunzelmann N, Kreuter A, Cozzio A, Mouthon L, et al. European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: localized scleroderma, systemic sclerosis and overlap syndromes. J Eur Acad Dermatol Venereol. 2017;31:1401–24.CrossRefPubMedGoogle Scholar
  83. 83.
    Kroft E, Creemers M, van den Hoogen F, Boezeman J, de Jong E. Effectiveness, side-effects and period of remission after treatment with methotrexate in localized scleroderma and related sclerotic skin diseases: an inception cohort study. Br J Dermatol. 2009;160:1075–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Mertens JS, Zweers MC, Kievit W, Knaapen HK, Gerritsen M, Radstake TR, et al. High-dose intravenous pulse methotrexate in patients with eosinophilic fasciitis. JAMA Dermatol. 2016;152:1262–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Weibel L, Sampaio MC, Visentin MT, Howell KJ, Woo P, Harper JI. Evaluation of methotrexate and corticosteroids for the treatment of localized scleroderma (morphoea) in children. Br J Dermatol. 2006;155:1013–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Uziel Y, Feldman B, Krafchik B, Yeung R, Laxer R. Methotrexate and corticosteroid therapy for pediatric localized scleroderma. J Pediatr. 2000;136:91–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Joly P, Bamberger N, Crickx B, Belaich S. Treatment of severe forms of localized scleroderma with oral corticosteroids: follow-up study on 17 patients. Arch Dermatol. 1994;130:663–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Li SC, Fuhlbrigge RC, Laxer RM, Pope E, Ibarra MF, Stewart K, et al. Developing comparative effectiveness studies for a rare, understudied pediatric disease: lessons learned from the carra juvenile localized scleroderma consensus treatment plan pilot study. Pediatr Rheumatol Online J. 2019;17:43.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kurzinski KL, Zigler CK, Torok KS. Prediction of disease relapse in a cohort of paediatric patients with localized scleroderma. Br J Dermatol. 2019;180:1183–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Zulian F, Vallongo C, Patrizi A, Belloni-Fortina A, Cutrone M, Alessio M, et al. A long-term follow-up study of methotrexate in juvenile localized scleroderma (morphea). J Am Acad Dermatol. 2012;67:1151–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Mirsky L, Chakkittakandiyil A, Laxer RM, O’Brien C, Pope E. Relapse after systemic treatment in paediatric morphoea. Br J Dermatol. 2012;166:443–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Martini G, Ramanan A, Falcini F, Girschick H, Goldsmith D, Zulian F. Successful treatment of severe or methotrexate-resistant juvenile localized scleroderma with mycophenolate mofetil. Rheumatology. 2009;48:1410–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Bali G, Fruhauf J, Wutte N, Aberer E. Cyclosporine reduces sclerosis in morphea: a retrospective study in 12 patients and a literature review. Dermatology. 2016;232:503–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Ogawa T, Okiyama N, Takamuki R, Inoue S, Saito A, Nakamura Y, et al. Juvenile case of multiple morphea profunda resulting in joint contracture that was successfully treated with cyclosporin a: a case report and review of the published works. J Dermatol. 2019;46:354–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Kumar AB, Blixt EK, Drage LA, El-Azhary RA, Wetter DA. Treatment of morphea with hydroxychloroquine: a retrospective review of 84 patients at mayo clinic, 1996–2013. J Am Acad Dermatol. 2019;80:1658–63.PubMedCrossRefGoogle Scholar
  96. 96.
    Lythgoe H, Baildam E, Beresford M, Cleary G, McCann L, Pain C. Tocilizumab as a potential therapeutic option for children with severe, refractory juvenile localized scleroderma. Rheumatology. 2018;57:401–2.CrossRefGoogle Scholar
  97. 97.
    Foeldvari I, Anton J, Friswell M, Bica B, de Inocencio J, Aquilani A, et al. Tocilizumab is a promising treatment option for therapy resistant juvenile localized scleroderma patients. J Scleroderma Relat Disord. 2018;2:203–7.CrossRefGoogle Scholar
  98. 98.
    Ferguson ID, Weiser P, Torok KS. A case report of successful treatment of recalcitrant childhood localized scleroderma with infliximab and leflunomide. Open Rheumatol J. 2015;9:30–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Adeeb F, Anjum S, Hodnett P, Kashif A, Brady M, Morrissey S, et al. Early- and late-stage morphea subtypes with deep tissue involvement is treatable with abatacept (orencia). Semin Arthritis Rheum. 2017;46:775–81.PubMedCrossRefGoogle Scholar
  100. 100.
    Stausbøl-Grøn B, Olesen A, Deleuran B, Deleuran M. Abatacept is a promising treatment for patients with disseminated morphea profunda: presentation of two cases. Acta Derm Venereol. 2011;91:686–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Fage SW, Arvesen KB, Olesen AB. Abatacept improves skin-score and reduces lesions in patients with localized scleroderma: a case series. Acta Derm Venereol. 2018;98:465–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim SR, Charos A, Damsky W, Heald P, Girardi M, King BA. Treatment of generalized deep morphea and eosinophilic fasciitis with the janus kinase inhibitor tofacitinib. JAAD Case Rep. 2018;4:443–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Todd D, Askari A, Ektaish E. Puva therapy for disabling pansclerotic morphoea of children. Br J Dermatol. 1998;138:201–2.PubMedCrossRefGoogle Scholar
  104. 104.
    Rose RF, Goodfield MJ. Combining puva therapy with systemic immunosuppression to treat progressive diffuse morphoea. Clin Exp Dermatol. 2005;30:226–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Song P, Gocke C, Wigley F, Boin F. Resolution of pansclerotic morphea after treatment with antithymocyte globulin. Nat Rev Rheumatol. 2009;5:513–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Nair V, Sharma A, Sharma S, Das S, Bhakuni DS, Narayanan K, et al. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma. Int J Rheum Dis. 2015;18:366–71.PubMedCrossRefGoogle Scholar
  107. 107.
    Le E, Freischlag J, Christo P, Chhabra A, Wigley F. Thoracic outlet syndrome secondary to localized scleroderma treated with botulinum toxin injection. Arthrits Care Res. 2010;62:430–3.CrossRefGoogle Scholar
  108. 108.
    Radhakrishnan DM, Goyal V, Shukla G, Singh MB, Ramam M. Hemi masticatory spasm: series of 7 cases and review of literature. Mov Disord Clin Pract. 2019;6:316–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Rimoin L, Arbiser J. Improvement of “en coup de sabre” morphea and associated headaches with botulinum toxin injections. Dermatol Surg. 2016;42:1216–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Rodríguez-Castellanos M, Tlacuilo-Parra A, Sánchez-Enríquez S, Vélez-Gómez E, Guevara-Gutiérrez E. Pirfenidone gel in patients with localized scleroderma: a phase ii study. Arthritis Rheum Ther. 2015;16:510–4.CrossRefGoogle Scholar
  111. 111.
    Mertens JS, Seyger MMB, Thurlings RM, Radstake TRDJ, de Jong EMGJ. Morphea and eosinophilic fasciitis: an update. Am J Clin Dermatol. 2017;18:491–512.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Noakes R. Assessing the response of morphea and limited scleroderma to tranilast: a small prospective study comparing topical corticosteroids to a combination of topical corticosteroids and tranilast. Clin Cosmet Investig Dermatol. 2018;11:321–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zwischenberger B, Jacobe H. A systematic review of morphea treatments and therapeutic algorithm. J Am Acad Dermatol. 2011;65:925–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Marrani E, Foeldvari I, Lopez J, Cimaz R, Simonini G. Comparing ultraviolet light a photo(chemo)therapy with methotrexate protocol in childhood localized scleroderma: evidence from systematic review and meta-analysis approach. Semin Arthritis Rheum. 2018;48:495–503.PubMedCrossRefGoogle Scholar
  115. 115.
    Falanga V, Medsger TA Jr, Reichlin M, Rodnan GP. Linear scleroderma. Clinical spectrum, prognosis, and laboratory abnormalities. Ann Intern Med. 1986;104:849–57.PubMedCrossRefGoogle Scholar
  116. 116.
    Mishima K, Kitoh H, Matsushita M, Nagata T, Kamiya Y, Ishiguro N. Extensive bone lengthening for a patient with linear morphea. Case Rep Orthop. 2018;2018:4535804.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Kineston D, Kwan J. Use of a fractional ablative 10.6-μm carbon dioxide laser in the treatment of a morphea-related contracture. Arch Dermatol. 2011;147:1148–50.PubMedCrossRefGoogle Scholar
  118. 118.
    Palmero M, Uziel Y, Laxer R, Forrest C, Pope E. En coup de sabre scleroderma and Parry–Romberg syndrome in adolescents: surgical options and patient-related outcomes. J Rheumatol. 2010;37:2174–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Zanelato T, Marquesini G, Colpas P, Magalhães R, de Moraes A. Implantation of autologous fat globules in localized scleroderma and idiopathic lipoatrophy—report of five patients. An Bras Dermatol. 2013;88:120–3.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Segna E, Pucciarelli V, Beltramini GA, Sforza C, Silvestre FJ, Gianni AB, et al. Parry Romberg syndrome and linear facial scleroderma: management in pediatric population. J Biol Regul Homeost Agents. 2017;31:131–8.PubMedGoogle Scholar
  121. 121.
    Lee JH, Lim SY, Lee JH, Ahn HC. Surgical management of localized scleroderma. Arch Craniofac Surg. 2017;18:166–71.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Franco JP, Serra MS, Lima RB, D’Acri AM, Martins CJ. Scleroderma en coup de sabre treated with polymethylmethacrylate—case report. An Bras Dermatol. 2016;91:209–11.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Mura S, Fin A, Parodi PC, Denton CP, Howell KJ, Rampino Cordaro E. Autologous fat transfer in the successful treatment of upper limb linear morphoea. Clin Exp Rheumatol. 2018;36(Suppl 113):183.PubMedGoogle Scholar
  124. 124.
    Chen B, Wang X, Long X, Zhang M, Huang J, Yu N, et al. Supportive use of adipose-derived stem cells in cell-assisted lipotransfer for localized scleroderma. Plast Reconstr Surg. 2018;141:1395–407.PubMedCrossRefGoogle Scholar
  125. 125.
    Furuzawa-Carballeda J, Ortíz-Ávalos M, Lima G, Jurado-Santa Cruz F, Llorente L. Subcutaneous administration of polymerized type i collagen downregulates interleukin (IL)-17a, IL-22 and transforming growth factor-β1 expression, and increases Foxp3-expressing cells in localized scleroderma. Clin Exp Dermatol. 2012;37:599–609.PubMedCrossRefGoogle Scholar
  126. 126.
    Takeda A, Akimoto M, Hayashi K, Kounoike N, Nemoto M, Uchinuma E. Surgical management of breast deformity in a young patient with localized scleroderma: a case report and literature review. Aesthet Surg J. 2013;33:691–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Das S, Bernstein I, Jacobe H. Correlates of self-reported quality of life in adults and children with morphea. J Am Acad Dermatol. 2014;70:904–10.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bali G, Kárpáti S, Sárdy M, Brodszky V, Hidvégi B, Rencz F. Association between quality of life and clinical characteristics in patients with morphea. Qual Life Res. 2018;27:2525–32.PubMedCrossRefGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine 2019

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Pediatric RheumatologyJoseph M. Sanzari Children’s Hospital, Hackensack University Medical CenterHackensackUSA
  2. 2.Department of PediatricsHackensack Meridian School of Medicine at Seton Hall UniversityCliftonUSA
  3. 3.Department of Rheumatology, Immunology, and AllergyChildren’s Hospital, Zhejiang University School of MedicineHangzhouChina

Personalised recommendations