Advertisement

Current status and recent advances on the use of ultrasonography in pediatric rheumatic diseases

  • Li-Xia Zou
  • Mei-Ping Lu
  • Lawrence Kwok Leung JungEmail author
Review Article
  • 23 Downloads

Abstract

Background

Ultrasonography has become a useful tool in the clinical rheumatology settings in the last two decades, but its use has only recently been explored by pediatric rheumatologists. The aim of this article is to review the literature on the current status and recent advances on the use of ultrasound in pediatric rheumatic diseases.

Data sources

We have retrieved and reviewed the relevant articles from MEDLINE/PubMed databases published so far, on the applications of ultrasound in juvenile idiopathic arthritis (JIA), systemic lupus erythematosus, dermatomyositis, enthesitis, Sjogren’s syndrome, and other rheumatic diseases. In addition, articles on novel ultrasound imaging technology of potential use in pediatric rheumatology are also reviewed.

Results

In JIA, ultrasound can be used to detect subclinical synovitis, to improve the classification of patients in JIA subtypes, to capture early articular damage, to monitor treatment response, and to guide intraarticular injections. Ultrasound is also considered useful in other rheumatic disorders for the evaluation of musculoskeletal symptoms, assessment of parotid gland pathology, and measurement of skin thickness and pathology. Novel ultrasound techniques developed to augment the functionality of ultrasonography may also be applicable in pediatric rheumatic disorders.

Conclusions

Ultrasound shows great promise in the assessment and management of children with rheumatologic disorders. However, standardization and validation of ultrasound in healthy children and in patients with rheumatic diseases are still needed.

Keywords

Dermatomyositis Juvenile arthritis Lupus Pediatric rheumatic diseases Sonoelastography Ultrasound 

Notes

Author contributions

LXZ collected and analyzed data and prepared the manuscript. MPL supervised the drafting and revision of the manuscript. LXZ and MPL contributed equally to this work. LKLJ contributed to the conception, drafting and revision of the manuscript. All authors approved the final version of the manuscript.

Funding

This study is funded by Zhejiang Basic Public Welfare Research Project (LGF19H100002).

Compliance with ethical standards

Ethical approval

Ethical approval was not obtained, since this is a literature review article.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Möller I, Janta I, Backhaus M, Ohrndorf S, Bong DA, Martinoli C, et al. The 2017 EULAR standardised procedures for ultrasound imaging in rheumatology. Ann Rheum Dis. 2017;76:1974–9.CrossRefGoogle Scholar
  2. 2.
    D'Agostino MA, Terslev L, Aegerter P, Backhaus M, Balint P, Bruyn GA, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce—part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 2017;3:e000428.CrossRefGoogle Scholar
  3. 3.
    Jeka S, Dura M, Żuchowski P, Zwierko B, Wojciechowski R. The role of ultrasonography in monitoring long-standing rheumatoid arthritis: a pilot study. Reumatologia. 2017;55:177–82.CrossRefGoogle Scholar
  4. 4.
    D’Agostino MA, Wakefield RJ, Berner-Hammer H, Vittecoq O, Filippou G, Balint P, et al. Value of ultrasonography as a marker of early response to abatacept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results from the APPRAISE study. Ann Rheum Dis. 2016;75:1763–9.CrossRefGoogle Scholar
  5. 5.
    Collado P, Vojinovic J, Nieto JC, Windschall D, Magni-Manzoni S, Bruyn GA, et al. Toward standardized musculoskeletal ultrasound in pediatric rheumatology: normal age-related ultrasound findings. Arthritis Care Res (Hoboken). 2016;68:348–56.CrossRefGoogle Scholar
  6. 6.
    Collado P, Windschall D, Vojinovic J, Magni-Manzoni S, Balint P, Bruyn GAW, et al. Amendment of the OMERACT ultrasound definitions of joints’ features in healthy children when using the DOPPLER technique. Pediatr Rheumatol Online J. 2018;16:23.CrossRefGoogle Scholar
  7. 7.
    Roth J, Ravagnani V, Backhaus M, Balint P, Bruns A, Bruyn GA, et al. Preliminary definitions for the sonographic features of synovitis in children. Arthritis Care Res (Hoboken). 2017;69:1217–23.CrossRefGoogle Scholar
  8. 8.
    Ranjan S, Jahan A, Yadav TP, Sachdev N, Dewan V, Singh S. Evaluation of synovial inflammation in juvenile idiopathic arthritis by power color Doppler and spectral Doppler ultrasonography. Indian J Pediatr. 2014;81:29–35.CrossRefGoogle Scholar
  9. 9.
    Nwawka OK. Update in musculoskeletal ultrasound research. Sports Health. 2016;8:429–37.CrossRefGoogle Scholar
  10. 10.
    Magni-Manzoni S. Ultrasound in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016;14:33.CrossRefGoogle Scholar
  11. 11.
    Collado Ramos P. Ultrasound imaging in juvenile idiopathic arthritis for the rheumatologist. Clin Exp Rheumatol. 2014;32(1 Suppl 80):S34–41.Google Scholar
  12. 12.
    Peters SE, Laxer RM, Connolly BL, Parra DA. Ultrasound-guided steroid tendon sheath injections in juvenile idiopathic arthritis: a 10-year single-center retrospective study. Pediatr Rheumatol Online J. 2017;15:22.CrossRefGoogle Scholar
  13. 13.
    Windschall D, Trauzeddel R, Haller M, Krumrey-Langkammerer M, Nimtz-Talaska A, Berendes R, et al. Pediatric musculoskeletal ultrasound: age- and sex-related normal B-mode findings of the knee. Rheumatol Int. 2016;36:1569–77.CrossRefGoogle Scholar
  14. 14.
    Trauzeddel R, Windschall D, Trauzeddel RF, Nirschl C, Ganser G, Palm-Beden K, et al. Arthrosonographic reference values of the shoulder joint in healthy children and adolescents: a cross-sectional multicentre ultrasound study. Klin Padiatr. 2017;229:293–301.CrossRefGoogle Scholar
  15. 15.
    Windschall D, Collado P, Vojinovic J, Magni-Manzoni S, Balint P, Bruyn GAW, et al. Age-related vascularization and ossification of joints in children: an international pilot study to test multi-observer ultrasound reliability. Arthritis Care Res (Hoboken). 2017.  https://doi.org/10.1002/acr.23335.Google Scholar
  16. 16.
    Petty R, Laxer RM, Wedderburn LR. Juvenile idiopathic arthritis. In: Petty R, Laxer RM, Lindsley C, Wedderburn LR, editors. Textbook of pediatric rheumatology. 7th ed. Amsterdam: Elsevier; 2016. p. 188–204.CrossRefGoogle Scholar
  17. 17.
    Damasio MB, Malattia C, Martini A, Tomà P. Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis. Pediatr Radiol. 2010;40:985–98.CrossRefGoogle Scholar
  18. 18.
    Janow GL, Panghaal V, Trinh A, Badger D, Levin TL, Ilowite NT. Detection of active disease in juvenile idiopathic arthritis: sensitivity and specificity of the physical examination vs ultrasound. J Rheumatol. 2011;38:2671–4.CrossRefGoogle Scholar
  19. 19.
    Żuber Z, Owczarek A, Sobczyk MI, Migas-Majoch A, Turowska-Heydel D, Sternal A, et al. Establishing percentile charts for hip joint capsule and synovial cavity thickness in apparently healthy children. Pediatr Rheumatol Online J. 2017;15:8.CrossRefGoogle Scholar
  20. 20.
    Rosendahl K, Bruserud IS, Oehme N, Júlíusson PB, de Horatio LT, Müller LO, et al. Normative ultrasound references for the paediatric wrist; dorsal soft tissues. RMD Open. 2018;4:e000642.CrossRefGoogle Scholar
  21. 21.
    Collado P, Naredo E, Calvo C, Gamir ML, Calvo I, García ML, et al. Reduced joint assessment vs comprehensive assessment for ultrasound detection of synovitis in juvenile idiopathic arthritis. Rheumatology (Oxford). 2013;52:1477–84.CrossRefGoogle Scholar
  22. 22.
    Haslam KE, Mccann LJ, Wyatt S, Wakefield RJ. The detection of subclinical synovitis by ultrasound in oligoarticular juvenile idiopathic arthritis: a pilot study. Rheumatology (Oxford). 2010;49:123–7.CrossRefGoogle Scholar
  23. 23.
    Rooney ME, Mcallister C, Burns JF. Ankle disease in juvenile idiopathic arthritis: ultrasound findings in clinically swollen ankles. J Rheumatol. 2009;36:1725–9.CrossRefGoogle Scholar
  24. 24.
    Pascoli L, Wright S, Mcallister C, Rooney M. Prospective evaluation of clinical and ultrasound findings in ankle disease in juvenile idiopathic arthritis: importance of ankle ultrasound. J Rheumatol. 2010;37:2409–14.CrossRefGoogle Scholar
  25. 25.
    Lin C, Diab M, Milojevic D. Grey-scale ultrasound findings of lower extremity entheses in healthy children. Pediatr Rheumatol Online J. 2015;13:14.CrossRefGoogle Scholar
  26. 26.
    Jousse-Joulin S, Breton S, Cangemi C, Fenoll B, Bressolette L, de Parscau L, et al. Ultrasonography for detecting enthesitis in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:849–55.CrossRefGoogle Scholar
  27. 27.
    Weiss PF, Chauvin NA, Klink AJ, Localio R, Feudtner C, Jaramillo D, et al. Detection of enthesitis in children with enthesitis-related arthritis: dolorimetry compared to ultrasonography. Arthritis Rheumatol. 2014;66:218–27.CrossRefGoogle Scholar
  28. 28.
    Shenoy S, Aggarwal A. Sonologic enthesitis in children with enthesitis-related arthritis. Clin Exp Rheumatol. 2016;34:143–7.Google Scholar
  29. 29.
    Collado P, Malattia C. Imaging in paediatric rheumatology: is it time for imaging? Best Pract Res Clin Rheumatol. 2016;30:720–35.CrossRefGoogle Scholar
  30. 30.
    Collado P, Jousse-Joulin S, Alcalde M, Naredo E, D'Agostino MA. Is ultrasound a validated imaging tool for the diagnosis and management of synovitis in juvenile idiopathic arthritis? A systematic literature review. Arthritis Care Res (Hoboken). 2012;64:1011–9.Google Scholar
  31. 31.
    Pradsgaard DØ, Fiirgaard B, Spannow AH, Heuck C, Herlin T. Cartilage thickness of the knee joint in juvenile idiopathic arthritis: comparative assessment by ultrasonography and magnetic resonance imaging. J Rheumatol. 2015;42:534–40.CrossRefGoogle Scholar
  32. 32.
    Pradsgaard DØ, Spannow AH, Heuck C, Herlin T. Decreased cartilage thickness in juvenile idiopathic arthritis assessed by ultrasonography. J Rheumatol. 2013;40:1596–603.CrossRefGoogle Scholar
  33. 33.
    Mitra S, Samui PP, Samanta M, Mondal RK, Hazra A, Mandal K, et al. Ultrasound detected changes in joint cartilage thickness in juvenile idiopathic arthritis. Int J Rheum Dis. 2019;22:1263–70.CrossRefGoogle Scholar
  34. 34.
    Szkudlarek M, Terslev L, Wakefield RJ, Backhaus M, Balint PV, Bruyn GA, et al. Summary findings of a systematic literature review of the ultrasound assessment of bone erosions in rheumatoid arthritis. J Rheumatol. 2016;43:12–21.CrossRefGoogle Scholar
  35. 35.
    Chauvin NA, Doria AS. Ultrasound imaging of synovial inflammation in juvenile idiopathic arthritis. Pediatr Radiol. 2017;47:1160–70.CrossRefGoogle Scholar
  36. 36.
    Ventura-Rios L, Faugier E, Barzola L, De la Cruz-Becerra LB, Sánchez-Bringas G, García AR, et al. Reliability of ultrasonography to detect inflammatory lesions and structural damage in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2018;16:58.CrossRefGoogle Scholar
  37. 37.
    Young CM, Shiels WE 2nd, Coley BD, Hogan MJ, Murakami JW, Jones K, et al. Ultrasound-guided corticosteroid injection therapy for juvenile idiopathic arthritis: 12-year care experience. Pediatr Radiol. 2012;42:1481–9.CrossRefGoogle Scholar
  38. 38.
    Raza K, Lee CY, Pilling D, Heaton S, Situnayake RD, Carruthers DM, et al. Ultrasound guidance allows accurate needle placement and aspiration from small joints in patients with early inflammatory arthritis. Rheumatology (Oxford). 2003;42:976–9.CrossRefGoogle Scholar
  39. 39.
    Laurell L, Court-Payen M, Nielsen S, Zak M, Fasth A. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the wrist region. A descriptive interventional study. Pediatr Rheumatol Online J. 2012;10:11.CrossRefGoogle Scholar
  40. 40.
    Young CM, Horst DM, Murakami JW, Shiels WE 2nd. Ultrasound-guided corticosteroid injection of the subtalar joint for treatment of juvenile idiopathic arthritis. Pediatr Radiol. 2015;45:1212–7.CrossRefGoogle Scholar
  41. 41.
    Baikar T, Chhabra A, Yadav TP, Sachdev N, Dewan V. Power color Doppler and spectral Doppler ultrasonography to evaluate response to intra-articular steroid injection in knee joints in juvenile idiopathic arthritis. Indian J Pediatr. 2017;84:826–32.CrossRefGoogle Scholar
  42. 42.
    Habibi S, Ellis J, Strike H, Ramanan AV. Safety and efficacy of US-guided CS injection into temporomandibular joints in children with active JIA. Rheumatology (Oxford). 2012;51:874–7.CrossRefGoogle Scholar
  43. 43.
    Vidovic M, Lamot L, Lamot M, Harjacek M. Intraarticular infliximab therapy in patients with juvenile idiopathic arthritis: the role of musculoskeletal ultrasound and disease activity scores in monitoring therapy response. Clin Exp Rheumatol. 2018;36:676–82.Google Scholar
  44. 44.
    Magni-Manzoni S, Epis O, Ravelli A, Klersy C, Veisconti C, Lanni S, et al. Comparison of clinical versus ultrasound-determined synovitis in juvenile idiopathic arthritis. Arthritis Rheumatol. 2009;61:1497–504.CrossRefGoogle Scholar
  45. 45.
    Ting TV, Vega-Fernandez P, Oberle EJ, De Ranieri D, Bukulmez H, Lin C, et al. Novel ultrasound image acquisition protocol and scoring system for the pediatric knee. Arthritis Care Res (Hoboken). 2019;71:977–85.CrossRefGoogle Scholar
  46. 46.
    Terslev L, Torp-Pedersen S, Qvistgaard E, Bliddal H. Spectral Doppler and resistive index. A promising tool in ultrasonographic evaluation of inflammation in rheumatoid arthritis. Acta Radiol. 2003;44:645–52.CrossRefGoogle Scholar
  47. 47.
    Rebollo-Polo M, Koujok K, Weisser C, Jurencak R, Bruns A, Roth J. Ultrasound findings on patients with juvenile idiopathic arthritis in clinical remission. Arthritis Care Res (Hoboken). 2011;63:1013–9.CrossRefGoogle Scholar
  48. 48.
    Magni-Manzoni S, Scirè CA, Ravelli A, Klersy C, Rossi S, Muratore V, et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann Rheum Dis. 2013;72:223–8.CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Rascoff NE, Iyer RS, Thapa M, Reichley L, Oron AP, et al. Flares of disease in children with clinically inactive juvenile idiopathic arthritis were not correlated with ultrasound findings. J Rheumatol. 2018;45:851–7.CrossRefGoogle Scholar
  50. 50.
    Nieto-González JC, Rodríguez A, Gámir-Gámir ML, Boteanu A, López-Robledillo JC, Garulo DC, et al. Can ultrasound-detected subclinical synovitis be an indicator of flare recurrence in juvenile idiopathic arthritis remission patients on tapered TNFi? Clin Exp Rheumatol. 2019;37:705–12.Google Scholar
  51. 51.
    De Lucia O, Ravagnani V, Pregnolato F, Hila A, Pontikaki I, Gattinara M, et al. Baseline ultrasound examination as possible predictor of relapse in patients affected by juvenile idiopathic arthritis (JIA). Ann Rheum Dis. 2018;77:1426–31.Google Scholar
  52. 52.
    Miotto E, Silva VB, Mitraud SAV, Furtado RNV, Natour J, Len CA, Terreri MTSELRA. Patients with juvenile idiopathic arthritis in clinical remission with positive power Doppler signal in joint ultrasonography have an increased rate of clinical flare: a prospective study. Pediatr Rheumatol Online J. 2017;15:80.CrossRefGoogle Scholar
  53. 53.
    Roth J. Predictive value of musculoskeletal ultrasound for flares in juvenile idiopathic arthritis. J Rheumatol. 2019;46:113.CrossRefGoogle Scholar
  54. 54.
    Mahmoud K, Zayat A, Vital EM. Musculoskeletal manifestations of systemic lupus erythematosus. Curr Opin Rheumatol. 2017;29:486–92.CrossRefGoogle Scholar
  55. 55.
    Di Matteo A, De Angelis R, Cipolletta E, Filippucci E, Grassi W. Systemic lupus erythematosus arthropathy: the sonographic perspective. Lupus. 2018;27:794–801.CrossRefGoogle Scholar
  56. 56.
    Zayat AS, Md Yusof MY, Wakefield RJ, Conaghan PG, Emery P, Vital EM. The role of ultrasound in assessing musculoskeletal symptoms of systemic lupus erythematosus: a systematic literature review. Rheumatology (Oxford). 2016;55:485–94.Google Scholar
  57. 57.
    Gunashekar S, Prakash M, Minz RW, Sharma A, Sharma S, Dhir V. Comparison of articular manifestations of mixed connective tissue disease and systemic lupus erythematosus on clinical examination and musculoskeletal ultrasound. Lupus. 2018;27:2086–92.CrossRefGoogle Scholar
  58. 58.
    Demirkaya E, Ozçakar L, Türker T, Haghari S, Ayaz NA, Bakkaloglu A, et al. Musculoskeletal sonography in juvenile systemic lupus erythematosus. Arthritis Rheumatol. 2009;61:58–60.CrossRefGoogle Scholar
  59. 59.
    Wong PC, Lee G, Delle Sedie A, Hanova P, Inanc N, Jousse-Joulin S, et al. Musculoskeletal ultrasound in systemic lupus erythematosus: systematic literature review by the Lupus Task Force of the OMERACT Ultrasound Working Group. J Rheumatol. 2019.  https://doi.org/10.3899/jrheum.181087.Google Scholar
  60. 60.
    Schanberg LE, Sandborg C, Barnhart HX, Ardoin SP, Yow E, Evans GW, et al. Premature atherosclerosis in pediatric systemic lupus erythematosus: risk factors for increased carotid intima-media thickness in the atherosclerosis prevention in pediatric lupus erythematosus cohort. Arthritis Rheumatol. 2009;60:1496–507.CrossRefGoogle Scholar
  61. 61.
    Su-Angka N, Khositseth A, Vilaiyuk S, Tangnararatchakit K, Prangwatanagul W. Carotid intima-media thickness and arterial stiffness in pediatric systemic lupus erythematosus. Lupus. 2017;26:989–95.CrossRefGoogle Scholar
  62. 62.
    Heckmatt JZ, Pier N, Dubowitz V. Real-time ultrasound imaging of muscles. Muscle Nerve. 1988;11:56–65.CrossRefGoogle Scholar
  63. 63.
    Zaidman CM, van Alfen N. Ultrasound in the assessment of myopathic disorders. J Clin Neurophysiol. 2016;33:103–11.CrossRefGoogle Scholar
  64. 64.
    Bhansing KJ, Hoppenreijs EP, Janssen AJ, van Royen-Kerkhof A, Nijhuis-Van der Sanden MW, van Riel PL, et al. Quantitative muscle ultrasound: a potential tool for assessment of disease activity in juvenile dermatomyositis. Scand J Rheumatol. 2014;43:339–41.CrossRefGoogle Scholar
  65. 65.
    Habers GE, Van Brussel M, Bhansing KJ, Hoppenreijs EP, Janssen AJ, Van Royen-Kerkhof A, et al. Quantitative muscle ultrasonography in the follow-up of juvenile dermatomyositis. Muscle Nerve. 2015;52:540–6.CrossRefGoogle Scholar
  66. 66.
    Weber MA. Ultrasound in the inflammatory myopathies. Ann N Y Acad Sci. 2009;1154:159–70.CrossRefGoogle Scholar
  67. 67.
    Aslam F, Fox M, Chang-Miller A. Ultrasound for the rheumatologist—focal myositis. Acta Reumatol Port. 2017;42:336–8.Google Scholar
  68. 68.
    Nair JR, Nijjar M, Chiphang A, Binymin KA. Ultrasound-guided closed muscle biopsy: a useful tool for rheumatologists: case report: recurrent focal myositis of the gastrocnemius muscle. Rheumatol Int. 2013;33:799–801.CrossRefGoogle Scholar
  69. 69.
    Tan CY, Statham B, Marks R, Payne PA. Skin thickness measurement by pulsed ultrasound: its reproducibility, validation and variability. Br J Dermatol. 1982;106:657–67.Google Scholar
  70. 70.
    Serup J. Localized scleroderma (morphoea): thickness of sclerotic plaques as measured by 15 MHz pulsed ultrasound. Acta Derm Venereol. 1984;64:214–9.Google Scholar
  71. 71.
    Li SC, Liebling MS, Haines KA. Ultrasonography is a sensitive tool for monitoring localized scleroderma. Rheumatology (Oxford). 2007;46:1316–9.CrossRefGoogle Scholar
  72. 72.
    Li SC, Liebling MS, Ramji FG, Opitz S, Mohanta A, Kornyat T, et al. Sonographic evaluation of pediatric localized scleroderma: preliminary disease assessment measures. Pediatr Rheumatol Online J. 2010;8:14.CrossRefGoogle Scholar
  73. 73.
    Mossel E, Delli K, van Nimwegen JF, Stel AJ, Kroese FGM, Spijkervet FKL, et al. Ultrasonography of major salivary glands compared with parotid and labial gland biopsy and classification criteria in patients with clinically suspected primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76:1883–9.CrossRefGoogle Scholar
  74. 74.
    Cornec D, Jousse-Joulin S, Marhadour T, Pers JO, Boisramé-Gastrin S, Renaudineau Y, et al. Salivary gland ultrasonography improves the diagnostic performance of the 2012 American College of Rheumatology classification criteria for Sjögren’s syndrome. Rheumatology (Oxford). 2014;53:1604–7.CrossRefGoogle Scholar
  75. 75.
    Jousse-Joulin S, Devauchelle-Pensec V, Cornec D, Marhadour T, Bressollette L, Gestin S, et al. Brief report: ultrasonographic assessment of salivary gland response to rituximab in primary Sjögren’s syndrome. Arthritis Rheumatol. 2015;67:1623–8.CrossRefGoogle Scholar
  76. 76.
    Fisher BA, everett CC, Rout J, O’Dwyer JL, Emery P, Pitzalis C, et al. Effect of rituximab on a salivary gland ultrasound score in primary Sjögren’s syndrome: results of the TRACTiSS randomised double-blind multicentre substudy. Ann Rheum Dis. 2018;77:412–6.Google Scholar
  77. 77.
    Jonsson MV, Baldini C. Major salivary gland ultrasonography in the diagnosis of Sjogren's syndrome: a place in the diagnostic criteria? Rheum Dis Clin North Am. 2016;42:501–17.CrossRefGoogle Scholar
  78. 78.
    De Vita S, Lorenzon G, Rossi G, Sabella M, Fossaluzza V. Salivary gland echography in primary and secondary Sjögren’s syndrome. Clin Exp Rheumatol. 1992;10:351–6.Google Scholar
  79. 79.
    Theander E, Mandl T. Primary Sjögren’s syndrome: diagnostic and prognostic value of salivary gland ultrasonography using a simplified scoring system. Arthritis Care Res (Hoboken). 2014;66:1102–7.CrossRefGoogle Scholar
  80. 80.
    Jousse-Joulin S, D’Agostino MA, Nicolas C, Naredo E, Ohrndorf S, Backhaus M, et al. Video clip assessment of a salivary gland ultrasound scoring system in Sjögren’s syndrome using consensual definitions: an OMERACT ultrasound working group reliability exercise. Ann Rheum Dis. 2019;78:967–73.CrossRefGoogle Scholar
  81. 81.
    Nieto-González JC, Monteagudo I, Bello N, Martínez-Estupiñan L, Naredo E, Carreño L. Salivary gland ultrasound in children: a useful tool in the diagnosis of juvenile Sjögren’s syndrome. Clin Exp Rheumatol. 2014;32:578–80.Google Scholar
  82. 82.
    Guissa VR, Martinelli EL, Brandão LMKR, Garcia LD, Provenza JR, Mendonça JA. Sonographic evaluation of salivary glands in juvenile Sjögren’s syndrome. Acta Rheumatol Port. 2018;43:61–5.Google Scholar
  83. 83.
    García CJ, Flores PA, Arce JD, Chuaqui B, Schwartz DS. Ultrasonography in the study of salivary gland lesions in children. Pediatr Radiol. 1998;28:418–25.CrossRefGoogle Scholar
  84. 84.
    Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37:855–70.CrossRefGoogle Scholar
  85. 85.
    Berko NS, Hay A, Sterba Y, Wahezi D, Levin TL. Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI? Pediatr Radiol. 2015;45:1522–8.CrossRefGoogle Scholar
  86. 86.
    Alfuraih AM, O'Connor P, Tan AL, Hensor EMA, Ladas A, Emery P, et al. Muscle shear wave elastography in idiopathic inflammatory myopathies: a case–control study with MRI correlation. Skeletal Radiol. 2019;48:1209–19.CrossRefGoogle Scholar
  87. 87.
    Wang L, Yan F, Yang Y, Xiang X, Qiu L. Quantitative assessment of skin stiffness in localized scleroderma using ultrasound shear-wave elastography. Ultrasound Med Biol. 2017;43:1339–47.CrossRefGoogle Scholar
  88. 88.
    Yang Y, Qiu L, Wang L, Xiang X, Tang Y, Li H, et al. Quantitative assessment of skin stiffness using ultrasound shear wave elastography in systemic sclerosis. Ultrasound Med Biol. 2019;45:902–12.CrossRefGoogle Scholar
  89. 89.
    Hofauer B, Mansour N, Heiser C, Gahleitner C, Thuermel K, Bas M, et al. Sonoelastographic modalities in the evaluation of salivary gland characteristics in Sjogren's syndrome. Ultrasound Med Biol. 2016;42:2130–9.CrossRefGoogle Scholar
  90. 90.
    Ooi CC, Richards PJ, Maffulli N, Ede D, Schneider ME, Connell D, et al. A soft patellar tendon on ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport. 2016;19:373–8.CrossRefGoogle Scholar
  91. 91.
    Wilson SR, Greenbaum LD, Goldberg BB. Contrast-enhanced ultrasound: what is the evidence and what are the obstacles? AJR Am J Roentgenol. 2009;193:55–60.CrossRefGoogle Scholar
  92. 92.
    Chang KV, Lew HL, Wang TG, Chen WS. Use of contrast-enhanced ultrasonography in musculoskeletal medicine. Am J Phys Med Rehabil. 2012;91:449–57.CrossRefGoogle Scholar
  93. 93.
    Zhao CY, Jiang YX, Li JC, Xu ZH, Zhang Q, Su N, et al. Role of contrast-enhanced ultrasound in the evaluation of inflammatory arthritis. Chin Med J (Engl). 2017;130:1722–30.CrossRefGoogle Scholar
  94. 94.
    Czihal M, Lottspeich C, Hoffmann U. Ultrasound imaging in the diagnosis of large vessel vasculitis. Vasa. 2017;46:241–53.CrossRefGoogle Scholar
  95. 95.
    Ma LY, Li CL, Ma LL, Cui XM, Dai XM, Sun Y, et al. Value of contrast-enhanced ultrasonography of the carotid artery for evaluating disease activity in Takayasu arteritis. Arthritis Res Ther. 2019;21:24.CrossRefGoogle Scholar
  96. 96.
    Li Z, Zheng Z, Ding J, Li X, Zhao Y, Kang F, et al. Contrast-enhanced ultrasonography for monitoring arterial inflammation in Takayasu arteritis. J Rheumatol. 2019;46:616–22.CrossRefGoogle Scholar
  97. 97.
    Deshpande N, Lutz AM, Ren Y, Foygel K, Tian L, Schneider M, et al. Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology. 2012;262:172–80.CrossRefGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine 2019

Authors and Affiliations

  • Li-Xia Zou
    • 1
  • Mei-Ping Lu
    • 1
  • Lawrence Kwok Leung Jung
    • 2
    Email author
  1. 1.Department of Rheumatology Immunology and Allergy, Children’s HospitalZhejiang University School of MedicineHangzhou 310003China
  2. 2.Division of RheumatologyChildren’s National Medical Center in Washington D.C.Washington, D.C., 20010USA

Personalised recommendations