Advertisement

Autism spectrum disorders: autistic phenotypes and complicated mechanisms

  • Xi-Cheng Zhang
  • Li-Qi Shu
  • Xing-Sen Zhao
  • Xue-Kun LiEmail author
Review Article
  • 114 Downloads

Abstract

Background

Autism spectrum disorder (ASD), a pervasive developmental neurological disorder, is characterized by impairments in social interaction and communication, and stereotyped, repetitive patterns of interests or behaviors. The mechanism of ASDs is complex, and genetic components and epigenetic modifications play important roles. In this review, we summarized the recent progresses of ASDs focusing on the genetic and epigenetic mechanisms. We also briefly discussed current animal models of ASD and the application of high-throughput sequencing technologies in studying ASD.

Data sources

Original research articles and literature reviews published in PubMed-indexed journals.

Results

Individuals with ASDs exhibit a set of phenotypes including neurological alteration. Genetic components including gene mutation, copy-number variations, and epigenetic modifications play important and diverse roles in ASDs. The establishment of animal models and development of new-generation sequencing technologies have contributed to reveal the complicated mechanisms underlying autistic phenotypes.

Conclusions

Dramatic progress has been made for understanding the roles of genetic and epigenetic components in ASD. Future basic and translational studies should be carried out towards those candidate therapeutic targets.

Keywords

Autism spectrum disorders Genetics Epigenetics CNV Next-generation sequencing 

Notes

Author contributions

XL, XZ, LS, and XZ wrote the manuscript.

Funding

X.L. was supported in part by the National Key Research and Development Program of China (No. 2016YFC0900400), the National Natural Science Foundation of China (31771395, 31571518), and the International Collaboration Program of Science Technology Department of Zhejiang Province (2016C34004). The authors declare that they have no financial or nonfinancial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Compliance with ethical standards

Ethical approval

Not required for this review article.

Conflict of interest

None declared.

Supplementary material

12519_2018_210_MOESM1_ESM.xlsx (9 kb)
Supplementary material 1 (XLSX 9 kb)

References

  1. 1.
    Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968;35:100–36.PubMedGoogle Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Publishing, Inc.; 2013.CrossRefGoogle Scholar
  3. 3.
    Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet (London, England). 2014;383:896–910.CrossRefGoogle Scholar
  4. 4.
    Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. Morb Mortal Wkly Rep Surveill Summ (Washington, DC: 2002). 2016;65:1–23.Google Scholar
  5. 5.
    Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet. 2002;3:872–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Sandin S, Reichenberg A. Recurrence rates in autism spectrum disorders—reply. JAMA. 2014;312:1155.PubMedCrossRefGoogle Scholar
  7. 7.
    Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21:185–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Kitzbichler MG, Khan S, Ganesan S, Vangel MG, Herbert MR, Hamalainen MS, et al. Altered development and multifaceted band-specific abnormalities of resting state networks in autism. Biol Psychiatry. 2015;77:794–804.PubMedCrossRefGoogle Scholar
  9. 9.
    Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542:348–51.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111–44.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Casanova MF. Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neurosci. 2006;12:435–41.Google Scholar
  12. 12.
    Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Azmitia EC, Singh JS, Whitaker-Azmitia PM. Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors. Neuropharmacology. 2011;60:1347–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017;134:537–66.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, et al. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol. 2012;124:67–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Pierce K, Haist F, Sedaghat F, Courchesne E. The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain. 2004;127:2703–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry. 2016;22:1576.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, et al. Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet. 2014;165:192–200.CrossRefGoogle Scholar
  20. 20.
    Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18:147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 mutations associated with ASD and Schizophrenia display both shared and distinct defects. Neuron. 2016;89:147–62.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S. Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun. 2014;5:4742.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Chanda S, Aoto J, Lee SJ, Wernig M, Sudhof TC. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking. Mol Psychiatry. 2016;21:169–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One. 2013;8:e67114.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dachtler J, Glasper J, Cohen RN, Ivorra JL, Swiffen DJ, Jackson AJ, et al. Deletion of alpha-neurexin II results in autism-related behaviors in mice. Transl Psychiatry. 2014;4:e484.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chrobak AA, Soltys Z. Bergmann glia, long-term depression, and autism spectrum disorder. Mol Neurobiol. 2017;54:1156–66.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    El-Ansary A, Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation. 2014;11:189.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Russ SA, Larson K, Halfon N. A national profile of childhood epilepsy and seizure disorder. Pediatrics. 2012;129:256–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Reilly C, Atkinson P, Das KB, Chin RF, Aylett SE, Burch V, et al. Neurobehavioral comorbidities in children with active epilepsy: a population-based study. Pediatrics. 2014;133:e1586–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry. 2008;64:577–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: disorders with a shared biology. Epilepsy Behav. 2015;47:191–201.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Belmonte MK, Bourgeron T. Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci. 2006;9:1221–5.PubMedCrossRefGoogle Scholar
  37. 37.
    McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3:137–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, et al. Symptom profiles of autism spectrum disorder in tuberous sclerosis complex. Neurology. 2016;87:766–72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry. 2015;2:909–16.PubMedCrossRefGoogle Scholar
  40. 40.
    Feng W, Kawauchi D, Korkel-Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Garg S, Green J, Leadbitter K, Emsley R, Lehtonen A, Evans DG, et al. Neurofibromatosis type 1 and autism spectrum disorder. Pediatrics. 2013;132:e1642–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Jurecka A, Zikanova M, Kmoch S, Tylki-Szymanska A. Adenylosuccinate lyase deficiency. J Inherit Metab Dis. 2015;38:231–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Schulze A, Bauman M, Tsai AC, Reynolds A, Roberts W, Anagnostou E, et al. Prevalence of creatine deficiency syndromes in children with nonsyndromic autism. Pediatrics. 2016;137:e20152672.CrossRefGoogle Scholar
  44. 44.
    Thurm A, Tierney E, Farmer C, Albert P, Joseph L, Swedo S, et al. Development, behavior, and biomarker characterization of Smith-Lemli-Opitz syndrome: an update. J Neurodev Disord. 2016;8:12.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sztainberg Y, Zoghbi HY. Lessons learned from studying syndromic autism spectrum disorders. Nat Neurosci. 2016;19:1408–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009;10:241–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT, Lowe JK, et al. A genome-wide association study of autism using the simons simplex collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol Psychiatry. 2015;77:775–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Anney R, Klei L, Pinto D, Regan R, Conroy J, Magalhaes TR, et al. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet. 2010;19:4072–82.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Brandler WM, Antaki D. Paternally inherited cis-regulatory structural variants are associated with autism. Science. 2018;360:327–31.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happe F, et al. Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Arch Gen Psychiatry. 2011;68:1113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Robinson EB, St Pourcain B, Anttila V. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48:552–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism. 2012;3:9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ruderfer DM, Hamamsy T, Lek M, Karczewski KJ, Kavanagh D, Samocha KE, et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat Genet. 2016;48:1107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Leppa VM, Kravitz SN, Martin CL, Andrieux J, Le Caignec C, Martin-Coignard D, et al. Rare inherited and de novo CNVs reveal complex contributions to ASD Risk in multiplex families. Am J Hum Genet. 2016;99:540–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Beaudet AL. Autism: highly heritable but not inherited. Nat Med. 2007;13:534–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Kato T. Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry Clin Neurosci. 2015;69:65–76.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hoeffding LK, Trabjerg BB, Olsen L, Mazin W, Sparso T, Vangkilde A, et al. Risk of psychiatric disorders among individuals with the 22q11.2 deletion or duplication: a Danish nationwide, register-based study. JAMA Psychiatry. 2017;74:282–90.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Emanuel BS, Shaikh TH. Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat Rev Genet. 2001;2:791–800.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Guo H, Peng Y, Hu Z, Li Y, Xun G, Ou J, et al. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Sci Rep. 2017;7:44155.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wong CC, Meaburn EL, Ronald A, Price TS, Jeffries AR, Schalkwyk LC, et al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry. 2014;19:495–503.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6:107.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19:862–71.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR. Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry. 2014;4:e349.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wu YE, Parikshak NN, Belgard TG, Geschwind DH. Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci. 2016;19:1463–76.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yip BHK, Bai D, Mahjani B, Klei L, Pawitan Y, Hultman CM, et al. Heritable variation, with little or no maternal effect, accounts for recurrence risk to autism spectrum disorder in Sweden. Biol Psychiatry. 2018;83:589–97.PubMedCrossRefGoogle Scholar
  72. 72.
    Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiol (Cambridge, Mass). 2011;22:476–85.CrossRefGoogle Scholar
  73. 73.
    Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics. 2016;8:85–104.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hulbert SW, Jiang YH. Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience. 2016;321:3–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA. 2008;105:1710–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016;15:7–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016;537:675–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, MacDermott AB, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008;11:1302–10.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY. Exploring the validity of valproic acid animal model of autism. Exp Neurobiol. 2015;24:285–300.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016;530:98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Meshalkina DA, Marina NK, Elana VK, Collier AD, Echevarria DJ, Abreu MS, et al. Zebrafish models of autism spectrum disorder. Exp Neurol. 2017;299:207–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Sener EF, Canatan H, Ozkul Y. Recent advances in autism spectrum disorders: applications of whole exome sequencing technology. Psychiatry Investig. 2016;13:255–64.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Codina-Sola M, Rodriguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Lain G, et al. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism. 2015;6:21.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lozano R, Vino A, Lozano C, Fisher SE, Deriziotis P. A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. Eur J Hum Genet. 2015;23:1702–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rk CY, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–11.CrossRefGoogle Scholar
  88. 88.
    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA. 2014;312:1880–7.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vitrac A, Cloez-Tayarani I. Induced pluripotent stem cells as a tool to study brain circuits in autism-related disorders. Stem cell Res Ther. 2018;9:226.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Children's Hospital, Zhejiang University School of Medicine 2019

Authors and Affiliations

  • Xi-Cheng Zhang
    • 1
    • 2
  • Li-Qi Shu
    • 3
  • Xing-Sen Zhao
    • 1
    • 2
  • Xue-Kun Li
    • 1
    • 2
    Email author
  1. 1.Children’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Institute of Translational Medicine, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.School of Medicine and Health SciencesGeorge Washington UniversityWashingtonUSA

Personalised recommendations