Advertisement

Non-Fickian transport of ammonia nitrogen in vadose zone: experiments and modeling

  • Qian Wang
  • Jianmin BianEmail author
  • Hanli Wan
  • Tianxue Gu
Original Paper
  • 31 Downloads

Abstract

To investigate the anomalous migration process of ammonia nitrogen in vadose zone, laboratory and numerical experiments of chloride and ammonia nitrogen are used to the transport parameters and evaluate the physical and chemical heterogeneity. Batch adsorption experiments and column experiments of silty loam and silty clay were conducted to determine key transport parameters. BTCs of chloride and ammonia nitrogen are derived using three approaches: equilibrium advection–dispersion equation (ADE), mobile–immobile model (MIM), and continuous time random walk–truncated power law (CTRW-TPL). All the models show accepted fitness to the transport process of chloride, but the CTRW-TPL fits best. For ammonia nitrogen, the CTRW-TPL with the retardation term (Λ) can fully describe the tracer-BTC, especially for late-time tailing, while the ADE and MIM cannot. Concentration fluctuation and irregular behavior in silty clay are more violent than those in silty loam. Physical heterogeneity has little effect on anomalous trait of BTCs in homogenous media. And lower permeability and mass exchange between mobile and immobile region contribute to enhance the non-Fickian behavior. Adsorption heterogeneity is the major contributor to the non-Fickian behavior. The more violent anomalous behavior can be related to the higher retardation. Our results reveal the non-Fickian characteristics of ammonia nitrogen which will provide useful insights for decision-makers in the assessment and management of groundwater pollution.

Keywords

Ammonia nitrogen Vadose zone Non-Fickian dispersion CTRW-TPL model Adsorption heterogeneity 

Notes

Funding information

This research reported here was funded by the National Natural Science Foundation of Jilin Province with “Study on the process of water and salt nitrogen mutual feeding in water field ecosystem of soda-saline soil area” (20150101116JC) and the project of Northeast Electric Power Design Institute with “Study on the migration of pollutant components in coal-fired power plant of Northeast Electric Power Design Institute” (DG1-G01-2016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdulgawad F, Bockelmann EB, Sapsford D, Williams K, Falconer R (2008) Ammonium ion adsorption on clay and sand under freshwater and seawater conditions. In: 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS, Nanjing, jiangsu, China, 2008. p 6Google Scholar
  2. Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New YorkGoogle Scholar
  3. Ben-Zvi R, Nissan A, Scher H, Berkowitz B (2018) A continuous time random walk (CTRW) integro-differential equation with chemical interaction. Eur Phys J B 91:1–8.  https://doi.org/10.1140/epjb/e2017-80417-8 CrossRefGoogle Scholar
  4. Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 31:1461–1466.  https://doi.org/10.1029/95WR00483 CrossRefGoogle Scholar
  5. Berkowitz B, Scher H (1998) Theory of anomalous chemical transport in random fracture networks. Phys Rev E 57:5858–5868.  https://doi.org/10.1103/PhysRevE.57.5858 CrossRefGoogle Scholar
  6. Berkowitz B, Scher H (2009) Exploring the nature of non-Fickian transport in laboratory experiments. Adv Water Resour 32:6.  https://doi.org/10.1016/j.advwatres.2008.05.004 CrossRefGoogle Scholar
  7. Berkowitz B, Scher H, Cortis A, Dentz M (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44.  https://doi.org/10.1029/2005rg000178
  8. Berkowitz B, Dror I, Hansen SK, Scher H (2016) Measurements and models of reactive transport in geological media. Rev Geophys 54:930–986.  https://doi.org/10.1002/2016rg000524 CrossRefGoogle Scholar
  9. Brain B, Georg K, Genndy M, Harvey S (2001) Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media. Ground Water 39:593–604.  https://doi.org/10.1111/j.1745-6584.2001.tb02347.x CrossRefGoogle Scholar
  10. Brigham W (1974) Mixing equations in short laboratory columns. Soc Petroleum Eng J 14:91–99.  https://doi.org/10.2118/4256-PA CrossRefGoogle Scholar
  11. Bromly M, Hinz C (2004) Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour Res 40.  https://doi.org/10.1029/2003wr002579
  12. Bultreys T, De Boever W, Cnudde V (2016) Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci Rev 155:93–128.  https://doi.org/10.1016/j.earscirev.2016.02.001 CrossRefGoogle Scholar
  13. Burnell DK, Hansen SK, Xu J (2017) Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk. Adv Water Resour 107:370–392.  https://doi.org/10.1016/j.advwatres.2017.06.014 CrossRefGoogle Scholar
  14. Burnell DK, Xu J, Hansen SK, Sims LS, Faust CR (2018) A practical modeling framework for non-Fickian transport and multi-species sequential first-order reaction. Ground Water.  https://doi.org/10.1111/gwat.12660 CrossRefGoogle Scholar
  15. Chakraborty P, Meerschaert MM, Lim CY (2009) Parameter estimation for fractional transport: a particle-tracking approach. Water Resour Res 45.  https://doi.org/10.1029/2008wr007577
  16. Clothier BE, Kirkham MB, McLean JE (1992) In situ measurement of the effective transport volume for solute moving through soil. Soil Sci Soc Am J 56:733–736.  https://doi.org/10.2136/sssaj1992.03615995005600030010x CrossRefGoogle Scholar
  17. Comolli A, Dentz M (2017) Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach. Eur Phys J B 90:90–18.  https://doi.org/10.1140/epjb/e2017-80370-6 CrossRefGoogle Scholar
  18. Cortis A, Berkowitz B (2004) Anomalous transport in “classical” soil and sand columns. Soil Sci Soc Am J 68:1539–1548.  https://doi.org/10.2136/sssaj2004.1539 CrossRefGoogle Scholar
  19. Cortis A, Harter T, Hou L, Atwill ER, Packman AI, Green PG (2006) Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour Res 42.  https://doi.org/10.1029/2006wr004897
  20. de Vries ET, Raoof A, van Genuchten MT (2017) Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport. Adv Water Resour 105:82–95.  https://doi.org/10.1016/j.advwatres.2017.04.013 CrossRefGoogle Scholar
  21. Edery Y, Dror I, Scher H, Berkowitz B (2015) Anomalous reactive transport in porous media: Experiments and modeling. Phys Rev E Stat Nonlin Soft Matter Phys 91:052130.  https://doi.org/10.1103/PhysRevE.91.052130 CrossRefGoogle Scholar
  22. Ekeleme AC, Agunwamba JC (2018) Experimental determination of dispersion coefficient in soil. Emerg Sci J 2.  https://doi.org/10.28991/esj-2018-01145
  23. Gao G, Zhan H, Feng S, Huang G, Mao X (2009) Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J Hydrol 377:391–404.  https://doi.org/10.1016/j.jhydrol.2009.08.036 CrossRefGoogle Scholar
  24. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689.  https://doi.org/10.1016/j.jhazmat.2005.12.043 CrossRefGoogle Scholar
  25. Hou L, Hu BX, Qi Z, Yang H (2018) Evaluating equilibrium and non-equilibrium transport of ammonium in a loam soil column. Hydrol Process 32:80–92.  https://doi.org/10.1002/hyp.11400 CrossRefGoogle Scholar
  26. Hu H, Mao X, Barry DA, Liu C, Li P (2014) Modeling reactive transport of reclaimed water through large soil columns with different low-permeability layers. Hydrogeol J 23:351–364.  https://doi.org/10.1007/s10040-014-1187-0 CrossRefGoogle Scholar
  27. Hui L (2014) The characteristic and influence factors of ammonia-nitrogen adsorption desorption in the loess. Dissertation, Changfluence factorGoogle Scholar
  28. Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manage 91:897–905.  https://doi.org/10.1016/j.jenvman.2009.11.006 CrossRefGoogle Scholar
  29. Kalaruban M, Loganathan P, Kandasamy J, Naidu R, Vigneswaran S (2017) Enhanced removal of nitrate in an integrated electrochemical-adsorption system. Sep Purif Technol 189:260–266.  https://doi.org/10.1016/j.seppur.2017.08.010 CrossRefGoogle Scholar
  30. Kohne JM, Kohne S, Simunek J (2009) A review of model applications for structured soils: a water flow and tracer transport. J Contam Hydrol 104:4–35.  https://doi.org/10.1016/j.jconhyd.2008.10.002 CrossRefGoogle Scholar
  31. Kuriqi A, Ardiçlioglu M, Muceku Y (2016) Investigation of seepage effect on river dike8.1stability under steady state and transient conditions. Pollack Periodica 11:87–104.  https://doi.org/10.1556/606.2016.11.2.8 CrossRefGoogle Scholar
  32. Lester DR, Metcalfe G, Trefry MG (2014) Anomalous transport and chaotic advection in homogeneous porous media. Phys Review E Stat Nonlin Soft Matter Phys 90:063012.  https://doi.org/10.1103/PhysRevE.90.063012 CrossRefGoogle Scholar
  33. Li N, Ren L (2009) Application of continuous time random walk theory to nonequilibrium transport in soil. J Contamin Hydrol 108:134–151.  https://doi.org/10.1016/j.jconhyd.2009.07.002 CrossRefGoogle Scholar
  34. Liu D, Jivkov AP, Wang L, Si G, Yu J (2017) Non-Fickian dispersive transport of strontium in laboratory-scale columns: modelling and evaluation. J Hydrol 549:1–11.  https://doi.org/10.1016/j.jhydrol.2017.03.053 CrossRefGoogle Scholar
  35. Liu DX, Zuo R, Jivkov AP, Wang JS, Hu LT, Huang LX (2019) Effect of colloids on non-Fickian transport of strontium in sediments elucidated by continuous-time random walk analysis. Environ Pollut 252:1491–1499.  https://doi.org/10.1016/j.envpol.2019.06.064 CrossRefGoogle Scholar
  36. Lu C et al (2018) A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields. J Hydrol 560:97–108.  https://doi.org/10.1016/j.jhydrol.2018.02.073 CrossRefGoogle Scholar
  37. Margolin G, Berkowitz B (2000) Application of continuous time random walks to transport in porous media. J Phys Chem 104:3942–3947.  https://doi.org/10.1021/jp993721x CrossRefGoogle Scholar
  38. Margolin G, Berkowitz B (2002) Spatial behavior of anomalous transport. Phys Rev E Stat Nonlin Soft Matter Phys 65:031101.  https://doi.org/10.1103/PhysRevE.65.031101 CrossRefGoogle Scholar
  39. Muceku Y, Korini O, Kuriqi A (2016) Geotechnical analysis of hill O, Kuriqi A (2016) Geotechnical of Berati, Albania. Period Polytech Civ Eng 60:61–73.  https://doi.org/10.3311/PPci.7752 CrossRefGoogle Scholar
  40. Nematollahi H, Moradi N, RiyaziNejad M, Vahidi H (2018) Removal of aliphatic hydrocarbons from gas oil contaminated clay soil via soil vapor extraction. Civ Eng J 4:1858.  https://doi.org/10.28991/cej-03091120 CrossRefGoogle Scholar
  41. Neuman SP, Tartakovsky DM (2009) Perspective on theories of non-Fickian transport in heterogeneous media. Adv Water Resour 32:670–680.  https://doi.org/10.1016/j.advwatres.2008.08.005 CrossRefGoogle Scholar
  42. Obianyo JI (2019) Effect of salinity on evaporation and the water cycle. Emerg Sci J 3:255–262.  https://doi.org/10.28991/esj-2019-01188 CrossRefGoogle Scholar
  43. Pachepsky Y, Benson D, Rawls W (2000) Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation. Soil Sci Soc Am J 64:1234–1243.  https://doi.org/10.2136/sssaj2000.6441234x CrossRefGoogle Scholar
  44. Padilla I, Yeh T, Conklin M (1999) The effect of water content on solute transport in unsaturated porous media. Water Resour Res 35:3303–3313CrossRefGoogle Scholar
  45. Rezanezhad F, Kleimeier C, Milojevic T, Liu H, Weber TKD, Van Cappellen P, Lennartz B (2017) The role of pore structure on nitrate reduction in peat soil: a physical characterization of pore distribution and solute transport. Wetlands 37:951–960.  https://doi.org/10.1007/s13157-017-0930-4 CrossRefGoogle Scholar
  46. Rubin S, Dror I, Berkowitz B (2012) Experimental and modeling analysis of coupled non-Fickian transport and sorption in natural soils. J Contamin Hydrol 132:28–36.  https://doi.org/10.1016/j.jconhyd.2012.02.005 CrossRefGoogle Scholar
  47. Shakir AO, Ali HAA-R (2019) The effect of lining material on the permeability of clayey soil. Civ Eng J 5:662.  https://doi.org/10.28991/cej-2019-03091277 CrossRefGoogle Scholar
  48. Sieczka A, Koda E (2016) Kinetic and equilibrium studies of sorption of ammonium in the soil-water environment in agricultural areas of Central Poland. Appl Sci 6:269.  https://doi.org/10.3390/app6100269 CrossRefGoogle Scholar
  49. Simunek J, Jarvis N, van Genuchten M, Gardenas A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272:14–35CrossRefGoogle Scholar
  50. Simunek J, Jacques D, Langergraber G, Bradford SA, Sejna M, van Genuchten MT (2013) Numerical modeling of contaminant transport using HYDRUS and its specialized modules. J Indian Inst Sci 93:265–284Google Scholar
  51. Sokolov IM, Schmidt MG, Sagues F (2006) Reaction-subdiffusion equations. Phys Rev E Stat Nonlin Soft Matter Phys 73:031102.  https://doi.org/10.1103/PhysRevE.73.031102 CrossRefGoogle Scholar
  52. Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour Res 18:1634–1642.  https://doi.org/10.1029/WR018i006p01634 CrossRefGoogle Scholar
  53. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48.  https://doi.org/10.1016/j.jtice.2017.01.024 CrossRefGoogle Scholar
  54. Toride N, Inoue M, Leij F (2003) Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci Soc Am J 67:703–712.  https://doi.org/10.2136/sssaj2003.0703 CrossRefGoogle Scholar
  55. Tyukhova A, Dentz M, Kinzelbach W, Willmann M (2016) Mechanisms of anomalous dispersion in flow through heterogeneous porous media. Phys Rev Fluids 1.  https://doi.org/10.1103/PhysRevFluids.1.074002
  56. Van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media I, Analytical solutions. Soil Sci Soc Am J 40:473–480CrossRefGoogle Scholar
  57. Vanderborght J, Vereecken H (2007) Review of dispersivities for transport modeling in soils. Vadose Zone J 6:29.  https://doi.org/10.2136/vzj2006.0096 CrossRefGoogle Scholar
  58. Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291.  https://doi.org/10.1016/j.chemosphere.2017.09.005 CrossRefGoogle Scholar
  59. Wang LW, Cardenas MB (2014) Non-Fickian transport through two-dimensional rough fractures: assessment and prediction. Water Resour Res 50:871–884.  https://doi.org/10.1002/2013WR014459 CrossRefGoogle Scholar
  60. WHO (2003) Ammonia in drinking-water background document for preparation of WHO guidelines for drinking-water quality. World Health OrganizationGoogle Scholar
  61. Ye W, Zhang Y (2018) Effect of dry-wet cycle on the formation of loess slope spalling hazards. Civ Eng J 4:785.  https://doi.org/10.28991/cej-0309133 CrossRefGoogle Scholar
  62. Zaheer M, Wen Z, Zhan H, Chen X, Jin M (2017) An experimental study on solute transport in one-dimensional clay soil columns. Geofluids 2017:1–17.  https://doi.org/10.1155/2017/6390607 CrossRefGoogle Scholar
  63. Zhao R, Gupta A, Novak JT, Goldsmith CD (2017) Evolution of nitrogen species in landfill leachates under various stabilization states. Waste Manag 69:225–231.  https://doi.org/10.1016/j.wasman.2017.07.041 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Qian Wang
    • 1
    • 2
  • Jianmin Bian
    • 1
    • 2
    Email author
  • Hanli Wan
    • 1
    • 2
  • Tianxue Gu
    • 1
    • 2
  1. 1.College of New Energy and EnvironmentJilin UniversityChangchunChina
  2. 2.Key Laboratory of Groundwater Resources and Environment, Ministry of EducationJilin UniversityChangchunChina

Personalised recommendations