Advertisement

Arabian Journal of Geosciences

, 12:554 | Cite as

Imaging of hydrothermal altered zones in Wadi Al-Bana, in southern Yemen, using remote sensing techniques and very low frequency–electromagnetic data

  • Karam S. I. Farag
  • Fares M. Howari
  • Karim W. AbdelmalikEmail author
ArabGU2016
  • 114 Downloads
Part of the following topical collections:
  1. Current Advances in Geology of North Africa

Abstract

Economic mineralization and hydrothermally altered zones are areas of great economic interests. This study focusses on hydrothermal altered zones of high mineralization potentials in Wadi Al-Bana, in southern Yemen. An azimuthal very low frequency–electromagnetic (AVLF-EM) data acquisition was conducted in search for mineralization in the study area. The study integrated observations from geophysical field data with others extracted from object-oriented principal component analysis (PCA) to better map and understand mineralization in the investigated area. This technique was applied to two data sets, ASTER and Landsat 8 Operational Land Imager (OLI) imagery. The results of PCA revealed high accuracy in detecting alteration minerals and for mapping zones of high concentration of these minerals. The PCA-based distribution of selected alteration zones correlated spatially with high conductivity anomalies in the subsurface that were detected by VLF measurements. Finally, a GIS model was built and successfully utilized to categorize the resulted altered zones, into three levels.

Graphical abstract

Keywords

Azimuthal VLF-EM survey Remote sensing Object-oriented PCA Hydrothermal alteration Mineral exploration 

Notes

Acknowledgments

The authors deeply thank the anonymous editors and reviewers for their precious comments and advice to improve the research paper quality as well as Dr. Tarek A. Barakat, Civil Engineering Department, Faculty of Engineering, Sana’a University, for his support and facilitating the field trips.

Funding information

UAE Space Agency for time funding grant number Z01-2016-001.6

References

  1. Abd-El Monsef H, Khalifa IH, Faisal M (2015) Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and WorldView II images at Wadi Rofaiyed, South Sinai, Egypt. Arab J Geosci 8:9285–9300.  https://doi.org/10.1007/s12517-015-1909-1 CrossRefGoogle Scholar
  2. Abdelmalik K.W., (2018) Role of statistical remote sensing for Inland water quality parameters prediction. The Egyptian Journal of Remote Sensing and Space Science 21 (2):193-200CrossRefGoogle Scholar
  3. Abdelmalik K. W., (2019) Landsat 8: Utilizing sensitive response bands concept for image processing and mapping of basalts. The Egyptian Journal of Remote Sensing and Space ScienceGoogle Scholar
  4. Abdelmalik KW, Abd-Allah AMA (2018) Integration of remote sensing technique and field data in geologic mapping of an ophiolitic suture zone in western Arabian Shield. J Afr Earth Sci 146:180–190.  https://doi.org/10.1016/j.jafrearsci.2017.10.006 CrossRefGoogle Scholar
  5. Aboelkhair H, Yoshiki N, Yasushi W, Isao S (2010) Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J Afr Earth Sci 58(1):141–618CrossRefGoogle Scholar
  6. Al-Kotbah A M A (1996) Structural geology of South Hadhramaut area Yemen Republic. Ph.D. Thesis, Department of Geology, Faculty of Science, and Applied Geology, University of Glasgow, United KingdomGoogle Scholar
  7. As-Saruri MA, Wiefel H (1998) The lithological-structural provinces of the basement in the central region of southwestern Arabian Peninsula. Z Geol Wiss Berlin 26(5/6):531–541Google Scholar
  8. As-Saruri MA, Wiefel H (2012) The lithostratigraphic subdivision of the Proterozoic basement rocks of the Mudiyah–Mukalla area. Yemen Arab J Geosci 5:1127–1150CrossRefGoogle Scholar
  9. Atkins W S, Binnie C J A (1984) Feasibility study for Wadi Bana and Abyan Delta Development Project. Internal Technical Report, Vol. II(A): Hydrology and water Resources. Ministry of Agriculture and Agrarian Reform, PDR YemenGoogle Scholar
  10. Autin J, Bellahsen N, Leroy S, Husson L, Beslier M, d'Acremont E (2013) The role of structural inheritance in oblique rifting: insights from analogue models and application to the Gulf of Aden. Tectonophysics 607:51–64CrossRefGoogle Scholar
  11. Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113(4):711–715CrossRefGoogle Scholar
  12. Bastani M, Pedersen LB (2001) Estimation of magnetotelluric transfer functions from radio transmitters. Geophysics 66:1038–1051CrossRefGoogle Scholar
  13. Bayrak M (2002) Exploration of chrome ore in southwestern Turkey by VLF–EM. J Balkan Geophys Soc 5(2):35–46Google Scholar
  14. Beydoun Z R (1964) The stratigraphic and structure of the eastern Aden Protectorate. Overseas Geology and Mineral Resources Bulletin Supplement Series 5, HMSO, London, 107Google Scholar
  15. Beydoun Z R (1966) Geology of the Arabian Peninsula–Eastern Aden Protectorate and Part of Dhufar. U.S. Geological Survey Professional Paper. 560Google Scholar
  16. Beydoun ZR, Greenwood JEGW (1968) Aden Protectorat and Dhofar. In: Dubertret L (ed) Lexique Stratigraphique International, III, Asie Fascicule 10b2. CNRS, Paris, p 126Google Scholar
  17. Crósta A P and Moore M J (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. 9th Thematic Conference on Remote Sensing for Exploration Geology, Environmental Research Institute of Michigan, Ann Arbor, pp. 1173–1187Google Scholar
  18. Crósta AP, Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration 648 minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240CrossRefGoogle Scholar
  19. Dar Al-Handasah (Shair and Partners) (1973) Abyan Delta project – definite plan report. Ministry of Agriculture and Agrarian Reform, PDR of YemenGoogle Scholar
  20. Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32:275–290CrossRefGoogle Scholar
  21. Farag K S I (2005) Multi-dimensional resistivity models of the shallow coal seams at the opencast mine ‘Garzweiler I’ (northwest of Cologne) inferred from radiomagnetotelluric, transient electromagnetic and laboratory data. Doktorarbeit, Institut für Geophysik und Meteorologie, Universität zu Köln, Cologne, GermanyGoogle Scholar
  22. Farag KSI, Tezkan B (2003) RMT signature of the Rhineland brown coal. In: Hördt A, Stoll JB (eds) Protokoll über das 20. Kolloquium Elektromagnetische Tiefenforschung, Königstein. DGG, pp 47–54Google Scholar
  23. Farag K S I and Tezkan B (2004) Near-surface electromagnetics for imaging the shallow coal seams at the Garzweiler mine, west of Cologne. In: 10th European Meeting of Environmental and Engineering Geophysics-Near Surface 2004, Extended Abstracts, Utrecht, EAGE, B024Google Scholar
  24. Farag KSI, Abd El-Aal MH, Garamoon HKF (2018) Monitoring subterraneous water regime at the new Ain Shams university campus in Al-Obour city (northeast of Cairo–Egypt) using both azimuthal very low frequency–electromagnetic and DC–resistivity sounding techniques. J Afr Earth Sci 143:339–349CrossRefGoogle Scholar
  25. Fraser DC (1969) Contouring of VLF-EM data. Geophysics. 34(6):958–967CrossRefGoogle Scholar
  26. Gaafar I (2015) Application of gamma ray spectrometric measurements and VLF–EM data for tracing vein type uranium mineralization, El-Sela area, South Eastern Desert, Egypt. NRIAG J Astron Geophys 4(2):266–282CrossRefGoogle Scholar
  27. Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1–2):59–69CrossRefGoogle Scholar
  28. Gabr S, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13CrossRefGoogle Scholar
  29. Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11:326–335CrossRefGoogle Scholar
  30. Hasan E, Fagin T, El Alfy Z, Hong Y (2016) Spectral Angle Mapper and aeromagnetic data integration for gold-associated alteration zone mapping: a case study for the Central Eastern Desert Egypt. Int J Remote Sens 37(8):1762–1776.  https://doi.org/10.1080/01431161.2016.1165887 CrossRefGoogle Scholar
  31. Huchon P, Khanbari K (2003) Rotation of the syn-rift stress field of the Northern Gulf of Aden Margin, Yemen Rotation of the syn-rift stress field of the northern. Tectonophysics 364(3–4):147–166.  https://doi.org/10.1016/S0040-1951(03)00056-8 CrossRefGoogle Scholar
  32. Karous M, Hjelt SE (1983) Linear filtering of VLF dip-angle measurements. Geophys Prospect 31:782–794CrossRefGoogle Scholar
  33. Klawitter G (2004) 100 Jahre Funktechnik in Deutschland: Band1 – Funksendestellen rund um Berlin. Funk Verlag, BerlinGoogle Scholar
  34. Knödel K, Krummel H, Lange G (1997) Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten: Band 3 – Geophysik. Springer Verlag, Berlin, Heidelberg and New YorkGoogle Scholar
  35. Korb AR, Dybwad P, Wadsworth W, Salisbury JW (1996) Portable FTIR spectrometer for field measurements of radiance and emissivity. Appl Opt 35:1679–1692CrossRefGoogle Scholar
  36. Le YU, Li X, Zhang D, Dong C (2008) Characteristics of remote sensing emission spectra of composite igneous rocks. Int Workshop Educ Technol Train Int Workshop Geosci Remote Sens IEEE.  https://doi.org/10.1109/ETTandGRS.2008.203
  37. Loughlin WP (1991) Principal components analysis for alteration mapping. Photogramm Eng Remote Sens 57:1163–1169Google Scholar
  38. McNeill JD, Labson VF (1991) Geological mapping using VLF radio fields. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2B. Society of Exploration Geophysicists, Tulsa, pp 521–640CrossRefGoogle Scholar
  39. Mittal S, Sharma SP, Biswas A, Sengupta D (2014) Correlation of VLF–EM data with radiometric measurements: implications for uranium exploration around Beldih, South Purulia shear zone, India. Int J Geophys 2014:1–13.  https://doi.org/10.1155/2014/969462 CrossRefGoogle Scholar
  40. Ninomiya Y (2002) Mapping quartz, carbonate minerals and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proc SPIE Int Soc Opt Eng 4710:191–202Google Scholar
  41. Ninomiya Y, Fu B (2002) Mapping quartz, carbonate minerals and mafic–ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. Proc SPIE 4710:191–202CrossRefGoogle Scholar
  42. Ninomiya Y, Fu B, Cudhy TJ (2005) Detecting lithology with Advanced Spaceborne Thermal Emission and Refection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens Environ 99:127–135CrossRefGoogle Scholar
  43. Ogilvy RD, Lee AC (1991) Interpretation of VLF–EM in-phase data using current density pseudosections. Geophys Prospect 39:567–580CrossRefGoogle Scholar
  44. Paál G, (1965) Ore prospecting based on VLF-radio signals. Geoexploration 3 (3):139–147CrossRefGoogle Scholar
  45. Paterson NR, Ronka V (1971) Five years of surveying with the very low frequency electromagnetic method. Geoexploration 9:7–26CrossRefGoogle Scholar
  46. Pirttijärvi M (2004) Karous–Hjelt and Fraser filtering of VLF–EM measurements: user manual of the KHFFILT program version–1.1a. University of Oulu, Department of Geosciences, Division of Geophysics, FinlandGoogle Scholar
  47. Rowan LC, Salisbury JW, Kingston MJ, Vergo N, Bostick NH (1991) Evaluation of visible and near-infrared and thermal-infrared reflectance spectra for studying thermal alteration of Pierre Shale, Wolcott, Colorado. J Geophys Res Solid Earth 96:18047–18057.  https://doi.org/10.1029/91JB01730 CrossRefGoogle Scholar
  48. Salisbury JW, D'Aria DM (1992) Infrared (8-14 μm) remote sensing of soil particle size. Remote Sens Environ 42:157–165CrossRefGoogle Scholar
  49. Salisbury J W, Walter L S, Vergo N, D'Aria D M (1991) Infrared (2.1- 25 micrometers) spectra of minerals: Johns Hopkins University press, 294 pp.Google Scholar
  50. Sayeed A K and Mohammed N A (2006) Gold mineralization at Najad, Al-Malaqi Al-Bana and Al-Awarid areas: preliminary mineral exploration works–final report (in Arabic). Internal Technical Report, Ministry of Oil and Minerals, Geological Survey and Mineral Resources–Aden Branch, Exploration Department for Industrial and Building Minerals and Rocks, Yemen 36Google Scholar
  51. Spies B R and Frischknecht F C (1991) Electromagnetic sounding. In: Nabighian, M. N. (Ed.), Electromagnetic Methods in Applied Geophysics, Society of Exploration Geophysicists, Tulsa, 2A:285–425Google Scholar
  52. Vaughan RG, Hook SJ, Calvin WM, Taranik JV (2005) Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sens Environ 99(1–2):140–158CrossRefGoogle Scholar
  53. Watt, A. D., 1967. VLF radio engineering. Pergamon Press, New York.CrossRefGoogle Scholar
  54. Wald AE, Salisbury JW (1995) The thermal infrared directional emissivity of powdered quartz. J Geophys Res 100:24665–24675CrossRefGoogle Scholar
  55. Zoheir B, Emam A (2012) Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert. Egypt J Afr Earth Sci 66-67:22–34CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Karam S. I. Farag
    • 1
  • Fares M. Howari
    • 2
  • Karim W. Abdelmalik
    • 3
    Email author
  1. 1.Geophysics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.College of Natural and Health SciencesZayed UniversityAbu DhabiUAE
  3. 3.Geology Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations