Age and composition of plagiogneisses from the Yangiyugan, Artic area: the first evidence of Precambrian blocks existing in the basement of the West Siberian Platform

  • Kirill S. Ivanov
  • Yuriy V. ErokhinEmail author
Original Paper


So far, Precambrian formations were not found in oil gas fields of the Western Siberian Platform (i.e., in central, western, and northern parts), where they were assumed to be. This article analyzes data on the mineral composition, geochemistry, and age of plagiogneisses from the Yangiyugan oil exploration area (Arctic part of Western Siberia, 80 km to the southeast of Salekhard). Rocks underlying this basement were naturally formed aggregates and are composed almost entirely of quartz and oligoclase, with the presence of muscovite and biotite, amphiboles (edenite, ferroedenite, and ferropargasite), clinozoisite–epidote, almandine garnet, clinochlore, microcline, magnetite, titanomagnetite, rutile, and fluorapatite. The mineral association tends to change with depth and plagiogneisses formed from trondhjemites (or leucocratic plagiogranites) under conditions of increasing temperature and amphibolites–facies metamorphism. First, trondhjemites occurred in the Ediacaran period about 566 ± 3 Ma (the dating of zircons by SHRIMP-II). The Sm-Nd isochron age of 691 ± 58 Ma also indicates Neoproterozoic origin for the gneiss protolith. It turned out that metamorphism of trondhjemite and its transformation into plagiogneiss took place in the early Ordovician (486 ± 4 Ma). The most recent tectonic–thermal events (U-Pb of 329 ± 9 and Rb-Sr of 292 ± 23 Ma) in the area are apparently associated with collisional processes and diaphthoresis. The metamorphic complexes of the studied area are the deep segments of a middle Paleozoic island arc system or, more likely, several island arcs. These segments were brought to the upper crust by rifting and graben formation about 250 million years ago. The isotope readings and geochronologic data in this article are the first direct evidence on the presence of Precambrian blocks in the pre-Jurassic oil-gas-bearing basement of the Western Siberian Platform.


Plagiogneisses Mineral composition Isotope dating Precambrian complexes Yangiyugan oil exploration area Basement West Siberia 



This research was supported by the Russian Foundation for Basic Research, project No. 18-05-70016.


  1. Allen MB, Anderson L, Searle RC, Buslov MM (2006) Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flood basalts. Jour. Geol. Soc. London 163:901–904CrossRefGoogle Scholar
  2. Bayanova TB (2004) The Kola region and the duration of the magmatic processes. Nauka, St. Petersburg, p 174Google Scholar
  3. Beyer C, Frost DJ, Miyajima N (2015) Experimental calibration of a garnet-clinopyroxene geobarometer for mantle eclogites. Contrib. Miner. Petrol. 169:18CrossRefGoogle Scholar
  4. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200:155–170CrossRefGoogle Scholar
  5. Bochkarev VS, Brekhuntsov AM, Sergeev SA, Shokalsky SP, Gorbachev VI, Narkisova VV, Tarkhanov GV (2013) The first U-Pb dating of zircon from Precambrian granite-gneiss basement of the West Siberian geosyneclise. Gornye Vedomosti 4:14–31Google Scholar
  6. Cherepanova Y, Artemieva IM, Thybo H, Chemia Z (2013) Crustal structure of the Siberian craton and the West Siberian basin: Anappraisal of existing seismic data. Tectonophysics 609:154–183CrossRefGoogle Scholar
  7. De Grave J, Glorie S, Zhimulev FI, Buslov MM, Elburg M, Vanhaecke F, Van den Haute P (2011) Emplacement and exhumation of the Kuznetsk-Alatau basement (Siberia): implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 23:248–256CrossRefGoogle Scholar
  8. Elkin EA, Krasnov VI, Bakharev NK, Belova EV, Dubatolov VN, Izokh NG, Klets AG, Kontorovich AE, Peregoedov LG, Sennikov NV, Timokhina IG, Khromykh VG (2001) Stratigraphy of Siberian oil and gas basins. Paleozoic formations of Western Siberia. Siberian Branch of the Russian Academy of Sciences, Novosibirsk, p 165Google Scholar
  9. Elkin EA, Kontorovich AE, Bakharev NK, Belyaev SY, Izokh NG, Kanygin AV, Kashtanov VA, Kirda NP, Klets AG, Kontorovich VA, Moiseev SA, Obut OT, Saraev SV, Sennikov NV, Filippov YF, Khomenko AV, Khromykh VG, Varlamov AI, Krasnov VI, Krinin VA (2007) Paleozoic facies megazones in the basement of the West Siberian geosyncline. Russian Geology and Geophysics 48:491–504CrossRefGoogle Scholar
  10. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. Journal of Petrology 42:2033–2048CrossRefGoogle Scholar
  11. Gee DG, Beliakova L, Pease V, Larionov A, Dovshikova E (2000) New, single zircon (Pb-evaporation) ages from Vendian intrusions in the basement beneath the Pechora Basin, northeastern Baltica. Polarforschung 68:1–3Google Scholar
  12. Gorbachev VI, Narkisova VV, Krupenik VA, Tarkhanov GV, Popov SG, Sveshnikova KY, Sokolova TN, Kuzmin DA, Dokuchaev AY (2013) New data on the basement of the West-Siberian plate: the Yangiyugan appraisal well. Gornye Vedomosti 9:22–37Google Scholar
  13. Grazhdankin DV, Kontorovich AE, Kontorovich VA, Saraev SV, Filippov Y, Karlova GA, Kochnev BB, Nagovitsin KE, Terleev AA, Fedyanin GO, Efimov AS (2015) Vendian of the Fore-Yenisei sedimentary basin (Southeastern West Siberia). Russian Geology and Geophysics 56:560–572CrossRefGoogle Scholar
  14. Holt PJ, Hunen J, Allen MB (2012) Subsidence of the West Siberian basin: effects of a mantle plume impact. Geology 40:703–706CrossRefGoogle Scholar
  15. Islamov SR, Bondarenko AV, Korobov GY, Podoprigora DG (2019) Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs. International Journal of Civil Engineering and Technology 10:2697–2713Google Scholar
  16. Ivanov SN, Perfiliev AS, Efimov AA, Smirnov GA, Necheukhin VM, Fershtater GB (1975) Fundamental features in the structure and evolution of the Urals. Amer. Jour. Sci. 275:107–130Google Scholar
  17. Ivanov KS, Fedorov YN, Ronkin YL, Erokhin YV (2005) Geochronological studies of the West Siberian petroleum megabasin: results of a 50-year research. Lithosphere 3:117–135Google Scholar
  18. Ivanov KS, Erokhin YV, Pisetsky VB, Ponomarev VS, Pogromskaya OE (2012a) New data on the structure of the West-Siberian platform basement. Lithosphere 4:91–106CrossRefGoogle Scholar
  19. Ivanov KS, Erokhin YV, Ronkin YL, Khiller VV, Rodionov NV, Lepikhina OP (2012b) The first data on the Early Proterozoic sialic basement in the eastern West Siberian Platform (studies of the Tyn’yar rhyolite-granite pluton). Russian Geology and Geophysics 53:997–1011CrossRefGoogle Scholar
  20. Ivanov KS, Puchkov VN, Fyodorov YN, Erokhin YV, Pogromskaya OE (2013) Tectonics of the Urals and adjacent part of the West-Siberian platform basement: main features of geology and development. Jour. Asian Earth Sci. 72:12–24CrossRefGoogle Scholar
  21. Ivanov KS, Koroteev VA, Erokhin YV, Shokalsky SP, Sergeev SA (2014) Composition and age of the crystalline basement in the Northwestern part of the West Siberian oil-and-gas megabasin. Doklady Earth Sciences 459:1582–1586CrossRefGoogle Scholar
  22. Ivanov KS, Erokhin YV, Ponomarev VS, Pogromskaya OE, Berzin SV (2016a) Geological structure of the basement of Western and Eastern parts of the West-Siberian plain. International Journal of Environmental & Science Education 11:6409–6432Google Scholar
  23. Ivanov KS, Panov VF, Likhanov II, Kozlov PS, Ponomarev VS, Khiller VV (2016b) Precambrian complexes of the Urals and Siberia: a review and consequence for the oil and gas geology of Western Siberia. Gornye Vedomosti 9:4–28Google Scholar
  24. Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA (2003) The Palaeo-Asian ocean in the Neoproterozoic and Early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precambrian Res. 122:329–358CrossRefGoogle Scholar
  25. Kunz BE, White RW (2019) Phase equilibrium modelling of the amphibolite to granulite facies transition in metabasic rocks (Ivrea Zone, NW Italy). J. Metamorph. Geol. CrossRefGoogle Scholar
  26. Likhanov II, Santosh M (2017) Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent. Precambrian Res. 300:315–331CrossRefGoogle Scholar
  27. Ludwig KR (1991) ISOPLOT – A plotting and regression program for radiogenic – isotope data, version 2.56. Openfile report 91-445. US Geol Surv, 40 pGoogle Scholar
  28. Ludwig KR (1999) Isoplot/Ex Ver 2.06: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, 4, 70.Google Scholar
  29. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 39:349–357CrossRefGoogle Scholar
  30. Padilla AJ, Miller CF, Carley TL, Economos RC, Schmitt AK, Coble MA, Hanchar JM (2016) Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology. Contrib. Miner. Petrol. 171:69CrossRefGoogle Scholar
  31. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25:956–983CrossRefGoogle Scholar
  32. Pease V, Drachev S, Stephenson R, Zhang X (2014) Arctic lithosphere—A review. Tectonophysics, 628, 1-25.CrossRefGoogle Scholar
  33. Petrov GA, Ronkin YL, Gerdes A, Ilyasova GA, Tristan NI, Maslov AV, Sindern S (2013) New data on the composition and age of orogenic granitoids from Timanides of the North Urals. Doklady Earth Sciences 450:618–622CrossRefGoogle Scholar
  34. Podoprigora DG, Korobov GY, Bondarenkо AV (2019) Acid stimulation technology for wells drilled the low-permeable high-temperature terrigenous reservoirs with high carbonate content. International Journal of Civil Engineering and Technology 10:2680–2696Google Scholar
  35. Reichow MK, Saunders AD, White RV, Al’Mukhamedov AI, Medvedev AY (2005) Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Siberian Traps, Russia. Lithos 79:425–452CrossRefGoogle Scholar
  36. Reichow MK, Pringle MS, Al’Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AY, Mitchell C, Puchkov VN (2009) The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277:9–20CrossRefGoogle Scholar
  37. Ritzmann O, Faleide JI (2009) The crust and mantle lithosphere in the Barents Sea/Kara Sea region. Tectonophysics 470:89–104CrossRefGoogle Scholar
  38. Rylkov SA, Rybalka AV, Ivanov KS (2013) Deep structure and metallogeny of the Urals: the comparison of the deep structure of Southern, Middle and Polar Urals. Lithosphere 1:3–16Google Scholar
  39. Saunders DA, England WR, Reichow MK, White VR (2005) A mantle plume origin for the Siberian traps: uplift and extensional in the West Siberian basin, Russia. Lithos 79:407–424CrossRefGoogle Scholar
  40. Scarrow JH, Pease V, Fleutelot C, Dushin V (2001) The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: an extension of the Cadomian arc? Precambrian Res. 110:255–275CrossRefGoogle Scholar
  41. Schultz SK, MacEachern JA, Gibson HD (2019) Late Mesozoic reactivation of Precambrian basement structures and their resulting effects on the sequence stratigraphic architecture of the Viking Formation of east-central Alberta, Canada. Lithosphere, 11(3), 308-321. CrossRefGoogle Scholar
  42. Schuth S, Gornyy VI, Berndt J, Shevchenko SS, Sergeev SA, Karpuzov AF, Mansfeldt T (2012) Early Proterozoic U-Pb zircon ages from basement gneiss at the Solovetsky archipelago, White Sea, Russia. Intern. J. Geosci. 3:289–296CrossRefGoogle Scholar
  43. Skorobogatov VA, Stroganov LV, Kopeev VD (2003) Geological structure and gas-oil-bearing capacity of Yamal. Nedra-Business Center, Moscow, p 352Google Scholar
  44. Stacey S, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26:207–221CrossRefGoogle Scholar
  45. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36:359–362CrossRefGoogle Scholar
  46. Surkov VS, Zhero OG (1981) Basement and evolution of the West Siberian platform cover. Nedra, Moscow, p 143Google Scholar
  47. Udoratina OV, Soboleva AA, Kuzenkov NA, Rodionov NV, Presnyakov SL (2006) Age of granitoids in the Man’khambo and Il’yaiz plutons, the northern Urals: U-Pb data. Doklady Earth Sciences 407:284–289CrossRefGoogle Scholar
  48. Ugryumov AN, Voronov VN (2014) Stratigraphic breakdown of the Western-Siberian basement along the length of the Yangiyugan wellbore. Gornye vedomosti 6:34–48Google Scholar
  49. Ulmishek GF (2003) Petroleum geology and resources of the West Siberian Basin, Russia (p. 49). Reston, Virginia: US Department of the Interior, US Geological Survey.Google Scholar
  50. Vibe Y, Bunge HP, Clark SR (2018) Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography. Gondwana Res 53:99–109CrossRefGoogle Scholar
  51. Vyssotski AV, Vyssotski VN, Nezhdanov AA (2006) Evolution of the West Siberian Basin. Mar. Pet. Geol. 23:93–126CrossRefGoogle Scholar
  52. Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta. 45:2311–2323CrossRefGoogle Scholar
  53. Zonenshain LP, Kuzmin MI, Natapov LM (1990) In: Page BM (ed) Geology of the USSR: a plate tectonics synthesis, Geophysics Geodynamics Series 21. American Geophysical Union, Washington DC 242 ppCrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Institute of Geology and Geochemistry of the Uralian Division of Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations