Water masses and chlorophyll-a distribution in a semi-enclosed bay of the southern Gulf of California, Mexico, after the “Godzilla El Niño”

  • Erik Coria-Monter
  • María Adela Monreal-Gómez
  • David Alberto Salas de LeónEmail author
  • Elizabeth Durán-Campos
Original Paper


During 2015–2016, a strong El Niño event, nicknamed the “Godzilla El Niño,” similar to events in 1982–1983 and 1996–1997 occurred in the Pacific Ocean. Based on in situ and satellite observations, this paper aims to assess the water masses and chlorophyll-a surface distribution in the Bay of La Paz, Gulf of California, Mexico, after this event. A conductivity, temperature, and depth (CTD) rosette system equipped with a fluorescence sensor was used to obtain high-resolution measurements and surface water samples for spectrophotometric determinations of chlorophyll-a. Satellite images of sea surface temperature and chlorophyll-a were obtained for the dates when the cruise took place. The results showed the presence of three water masses: Gulf of California Water, Subtropical Subsurface Water, and Pacific Intermediate Water, the last present in Boca Grande. The highest surface chlorophyll-a concentrations observed were 4.51 mg m-3, 4.63 mg m-3, and 1.00 mg m-3 from the fluorescence sensor, spectrophotometric determination, and satellite observations, respectively. The horizontal distribution patterns for the three methods employed matched well. Despite the fact that Godzilla El Niño had several adverse effects in different regions, at the Bay of La Paz, they seem to have had no dramatic effect on the chlorophyll-a at the time of our observations, even though the values observed were higher compared to previous reports. This apparent lack of effect on the surface waters due to this climate disruption could be associated to the seasonal variability of the phytoplankton productivity, which presents a peak during autumn and winter and to the local fertilization mechanisms reported in the study area; however, further observations are required to confirm this.


Phytoplankton biomass Godzilla El Niño Bay of La Paz Gulf of California 



The ship time for the Paleomar-II research cruise onboard the R/V El Puma was funded by the Universidad Nacional Autónoma de México (UNAM). We would like to express our gratitude to the NASA Ocean Biology Processing Group (OBPG) for the data products used in this study. We thank the participants of the research cruise, including the captain and crew. We acknowledge Jorge Castro by improving the figures, F. Sergio Castillo-Sandoval for technical support during the chemical analyses and Marco Belacicco for suggestions and comments. We appreciate the helpful comments by two anonymous reviewers.

Funding information

Consejo Nacional de Ciencia y Tecnología (CONACYT) sponsored E. Coria-Monter during this study. This study was supported by the Instituto de Ciencias del Mar y Limnología (UNAM) (grants number 144, 145, and 342).


  1. Álvarez-Borrego S, Schwartzlose RA (1979) Masas de agua del Golfo de California. Cienc Mar 6:43–63CrossRefGoogle Scholar
  2. Castro R, Mascarenhas AS, Durazo R, Collins CA (2000) Seasonal variation of the temperature and salinity at the entrance to the Gulf of California, Mexico. Cienc Mar 26(4):561–583CrossRefGoogle Scholar
  3. Changnon SA (2000) El Niño 1997-1998: the climate event of the century. Oxford University Press, New York 215 pGoogle Scholar
  4. Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Aldeco-Ramírez J, Merino-Ibarra M (2014) Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California. J Geophys Res Oceans 119:6258–6268. CrossRefGoogle Scholar
  5. Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán-Campos E (2017) Wind driven nutrient and chlorophyll-a enhancement at a cyclonic circulation in Bay of La Paz, Gulf of California, Mexico. Estuar Coast Shelf Sci 196:2990–2300CrossRefGoogle Scholar
  6. Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán-Campos E (2018) Impact of the “Godzilla El Niño” event of 2015-2016 on sea surface temperature and chlorophyll-a in the southern Gulf of California, Mexico, as evidenced by satellite and in situ data. Pac Sci 72(4):411–422CrossRefGoogle Scholar
  7. Duran-Campos E, Salas de León DA, Monreal-Gómez MA, Aldeco-Ramírez J, Coria-Monter E (2015) Differential zooplankton aggregation due to relative vorticity in a semi-enclosed bay. Estuar Coast Shelf Sci 164:10–18CrossRefGoogle Scholar
  8. Durazo R, Baumgartner TR (2002) Evolution of oceanographic conditions off Baja California: 1997-1998. Progr Oceanogr 54(1-4):7–31CrossRefGoogle Scholar
  9. Guevara-Guillén C, Shirasago-Germán B, Pérez-Lezama EL, Obeso-Nieblas MJ (2018) Variability of chlorophyll-a concentration and halocline depth in La Paz Bay (Gulf of California, Mexico) and the relationship to Pacific Large-Scale climatic phenomena. J Coast Res 34(4):920–927CrossRefGoogle Scholar
  10. IOC, SCOR, IAPSO (2010) The international thermodynamic equation of seawater 2010. Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 ppGoogle Scholar
  11. Kintisch E (2016) How a ‘Godzilla’ El Niño shook up weather forecasts. Science 352(6293):1501–1502CrossRefGoogle Scholar
  12. Klein K (2015) NOAA predicts strong El Niño. Eos, Transactions American Geophysical Union 96.
  13. Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  14. Lavín MF, Castro R, Beier E, Godínez VM, Amador A, Guest P (2009) SST, thermohaline structure, and circulation in the southern Gulf of California in June 2004 during the North American Monsoon Experiment. J Geophys Res Oceans 114:C02025. CrossRefGoogle Scholar
  15. Martínez-López A, Cervantes-Duarte R, Reyes-Salinas A, Valdez-Holguín JE (2001) Cambio estacional de la clorofila a en la Bahía de La Paz, B.C.S., México. Hidrobiologica 11(1):45–52Google Scholar
  16. Mathworks, Inc (2011) MATLAB. Global Optimization Toolbox: User’s Guide (r2011b).
  17. Molina-Cruz A, Perez Cruz L, Monreal-Gómez MA (2002) Laminated sediments in the Bay of La Paz Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology 49:1401–1410CrossRefGoogle Scholar
  18. Monreal-Gómez MA, Molina-Cruz A, Salas de León DA (2001) Water masses and cyclonic circulation in Bay of La Paz, during June 1998. J Mar Syst 30:305–315CrossRefGoogle Scholar
  19. Obeso-Nieblas M, Shirasago B, Sánchez-Velasco L, Gaviño-Rodriguez J (2004) Hydrographic variability in Bahia de La Paz, B.C.S, Mexico during the 1997-1998 El Niño. Deep-Sea Res II 51:689–710CrossRefGoogle Scholar
  20. Obeso-Nieblas M, Gaviño-Rodríguez JH, Obeso-Huerta H, Muñoz-Casillas SI (2014) Spatial termohaline variability, water masses and geostrophic circulation in Bahía de La Paz, Gulf of California. Rev Biol Mar Oceanogr 49(3):413–426CrossRefGoogle Scholar
  21. Paek H, Yu J-Y, Qian C (2017) Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res Lett 44.
  22. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 pGoogle Scholar
  23. Pavia EG, Graef F, Reyes J (2006) PDO-ENSO effects in the climate of Mexico. J Clim 19:6433–6438CrossRefGoogle Scholar
  24. Pérez-Cruz L, Molina-Cruz A (1988) El Niño 1983: effect on the distribution of silicoflagellates in the Gulf of California. Cienc Mar 14(3):9–38CrossRefGoogle Scholar
  25. Pérez-Cruz L (2006) Climate and ocean variability during the middle and late Holocene recorder in laminated sediments from Alfonso Basin, Gulf of California, Mexico. Quat Res 65:401–410CrossRefGoogle Scholar
  26. Pérez-Cruz L (2013) Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability. Quat Res 79:138–151CrossRefGoogle Scholar
  27. Pieri M, Massi L, Lazzara L, Nuccio C, Lapucci C, Maselli F (2015) Assessment of three algorithms for the operational estimation of [CHLA] from MODIS data in the Western Mediterranean Sea. Eur J Remote Sens 48:383–401CrossRefGoogle Scholar
  28. Reynolds C (2006) Ecology of Phytoplankton. Cambridge University Press, Cambridge 535 pCrossRefGoogle Scholar
  29. Roesler C, Uitz J, Claustre H, Boss E, Xing X, Organelli E, Briggs N, Bricaud A, Schmechtig C, Poteaaus A, D’Otenzio F, Ras J, Drapeau S, Haëntjens N, Barbieux M (2017) Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. L&O Methods 15:572–585Google Scholar
  30. Sánchez-Velasco L, Beier E, Godínez VM, Barton ED, Santamaría-del-Angel E, Jiménez-Rosemberg SPA, Marinone SG (2017) Hydrographic and fish larvae distribution during the “Godzilla El Niño 2015-2016” in the northern end of the shallow oxygen minimum zone of the Eastern Tropical Pacific Ocean. J Geophys Res Oceans 122:2156–2170. CrossRefGoogle Scholar
  31. Schiermeier Q (2015) Hunting the Godzilla El Niño. Nature 526:490–491CrossRefGoogle Scholar
  32. Shirasago-Germán B, Pérez-Lezama EL, Chávez EA, García-Morales R (2015) Influence of el Niño-Southern oscillation on the population structure of sea lion breeding colony in the Gulf of California. Estuar Coast Shelf Sci 154:69–76CrossRefGoogle Scholar
  33. Siegel DA, Buesseler KO, Doney SC, Sailley, SF, Behrenfeld MJ, Boyd PW (2014) Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem Cycles 28:181–196. CrossRefGoogle Scholar
  34. Silverberg N, Aguirre-Bahena F, Mucci A (2014) Time-series measurements of settling particulate matter in Alfonso Basin, La Paz Bay, southwestern Gulf of California. Cont Shelf Res 84:169–187CrossRefGoogle Scholar
  35. Stramma L, Fischer T, Grundle DS, Krahmann G, Bange HW, Marandino CA (2016) Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Sci 12:861–873CrossRefGoogle Scholar
  36. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. 2nd edn. J Fish Res Board Can. No. 067 (167), 311 ppGoogle Scholar
  37. Whitney FA (2015) Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys Res Lett 42:428–431CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Cátedras CONACYT. Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexicoMéxico
  2. 2.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexicoMéxico
  3. 3.Unidad Académica Mazatlán. Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMéxico

Personalised recommendations