Geochemical characteristics of dust aerosol availability in northwestern China

  • Xunming WangEmail author
  • Jimin Sun
  • Mingrui Qiang
  • Caixia Zhang
  • Danfeng Li
  • Ting Hua
  • Hui Li
  • Lili Lang
  • Linlin Jiao
  • Diwen Cai
  • Wenyong Ma
Original Paper


Based on field sample collections, wind tunnel experiments, and statistical analyses, the spatial differences of geochemical characteristics of dust aerosol availability originating from different landscapes in the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of northwestern China were evaluated. Experiments and statistical analysis results showed that there are many differences in the geochemical characteristics of dust aerosol availability originating from above regions. Riverbeds, wadis and gobi deserts, and interdunes are the major landscapes for element emissions of dust aerosols in the Qaidam Basin, Ala Shan Plateau, and Tarim Basin, respectively. Among them, more than 60% of the elements such as Ti, Cr, Rb, Y, Nb, Ce, Nd, Pb, and Al2O3 in dust aerosol availability that originated from the Ala Shan Plateau and the Tarim Basin may play an important role in the element emissions in coarse fractions. Variations in the geochemical characteristics of dust aerosol availability caused by landscape and regional differences may play an important role in loess compositions and in past climate reconstructions that used post-depositional eolian sediments as a proxy.


Dust aerosol Availability Landscape Geochemistry 


Funding information

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0601900), Key Frontier Program of Chinese Academy of Sciences (QYZDJ-SSW-DQC043), and the National Natural Science Foundation of China (No. 41771012).


  1. Al-Dousari A, Doronzo D, Ahmed M (2017) Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian gulf. Sustainability 9:1526CrossRefGoogle Scholar
  2. Balsam WL, Ellwood BB, Ji J, Williams ER, Long X, Hassani AE (2011) Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate. Quat Sci Rev 30:2732–2744CrossRefGoogle Scholar
  3. Bishop JKB, Davis RE, Sherman JT (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–821CrossRefGoogle Scholar
  4. Bloemendal J, Liu X, Sun Y, Li N (2008) An assessment of magnetic and geochemical indicators of weathering and pedogenesis at two contrasting sites on the Chinese Loess Plateau. Palaeogeogr Palaeocl 257:152–168CrossRefGoogle Scholar
  5. Bory AJM, Biscaye PE, Grousset FE (2003) Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys Res Lett 30:1167CrossRefGoogle Scholar
  6. Cable M, French F (1943) The Gobi Desert. Hodder and Stoughton, LondonGoogle Scholar
  7. Cetin M, Sevik H, Isinkaralar K (2017) Changes in the particulate matter and CO2 concentrations based on the time and weather conditions: the case of Kastamonu. Oxid Commun 40:477–448Google Scholar
  8. Cetin M, Sevik H, Yigit N, Ozel HB, Aricak B, Varol T (2018) The variable of leaf micromorphogical characters on grown in distinct climate conditions in some landscape plants. Fresenius Environ Bull 27:3206–3211Google Scholar
  9. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497CrossRefGoogle Scholar
  10. Chavagnac V, Lair M, Milton JA, Lloyd A, Croudace IW, Palmer MR, Green DRH, Cherkashev GA (2008) Tracing dust input to the Mid-Atlantic Ridge between 14°45′N and 36°14′N: geochemical and Sr isotope study. Mar Geol 247:208–225CrossRefGoogle Scholar
  11. Chen J, Li G (2011) Geochemical studies on the source region of Asian dust. Sci China Earth Sci 54:1279–1301CrossRefGoogle Scholar
  12. Chen J, Chen Y, Liu L, Ji J, Balsam W, Sun Y, Lu H (2006) Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochim Cosmochim Acta 70:1471–1482CrossRefGoogle Scholar
  13. Chen J, Li G, Yang J, Rao W, Lu H, Balsam W, Sun Y, Ji J (2007) Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochim Cosmochim Acta 71:3904–3914CrossRefGoogle Scholar
  14. Chen S, Zhao C, Qian Y, Leung LR, Huang J, Huang Z, Bi J, Zhang W, Yang L, Li D, Li J (2014) Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Res 15:15–30CrossRefGoogle Scholar
  15. Chen S, Huang J, Kang L, Wang H, Ma X, He Y, Yuan T, Yang B, Huang Z, Zhang G (2017a) Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi Deserts: comparison of measurements and model results. Atmos Chem Phys 17:2401–2421CrossRefGoogle Scholar
  16. Chen S, Huang J, Li J, Jia R, Jiang N, Kang L, Ma X, Xie T (2017b) Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci 60:1338–1355CrossRefGoogle Scholar
  17. Cheng T, Lu D, Wang C, Xu Y (2005) Chemical characteristics of Asian dust aerosol from Hunshan Dake Sandland in northern China. Atmos Environ 39:2903–2911CrossRefGoogle Scholar
  18. Cooke RU (1970) Stone pavement in deserts. Ann Assoc Am Geogr 60:560–577CrossRefGoogle Scholar
  19. Derbyshire E, Meng X, Kemp RA (1998) Provenance, transport and characteristics of modern Aeolian dust in western Gansu Province, China, and interpretation of Quaternary loess record. J Arid Environ 39:497–516CrossRefGoogle Scholar
  20. Doronzo DM, Khalaf EA, Dellino P, de Tullio MD, Dioguardi F, Gurioli L, Mele D, Pascazio G, Sulpizio R (2015) Local impact of dust storms around a suburban building in arid and semi-arid regions: numerical simulation examples from Dubai and Riyadh, Arabian Peninsula. Arab J Geosci 8:7359–7369CrossRefGoogle Scholar
  21. Evan AT, Vimont DJ, Heidinger AK, Kossin JP, Bennartz R (2009) The role of aerosols in the evolution of tropical North Atlantic Ocean temperature. Science 324:778–781CrossRefGoogle Scholar
  22. Evan A, Flamant C, Gaetani M, Guichard F (2016) The past, present and future of African dust. Nature 531:493–495CrossRefGoogle Scholar
  23. Gallet S, Jahn B, Torii M (1996) Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem Geol 133:67–88CrossRefGoogle Scholar
  24. Gerson R, Amit R, Grossman S (1985) Dust availability in desert terrains. Dissertation, Hebrew Univ Jerusalem (Israel) Inst of Earth Sciences.Google Scholar
  25. Ginoux P, Prospero J, Gill T, Hsu N, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005CrossRefGoogle Scholar
  26. Gong S, Zhang X, Zhao T, Mckendry I, Jaffe D, Lu N (2003) Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res 108(D9):4262CrossRefGoogle Scholar
  27. Hao Q, Guo Z (2005) Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution. J Geophys Res 110:B12101CrossRefGoogle Scholar
  28. Hao Q, Guo Z, Qiao Y, Xu B, Oldfield F (2010) Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat Sci Rev 29:3317–3326CrossRefGoogle Scholar
  29. Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth-Sci Rev 54:43–80CrossRefGoogle Scholar
  30. Hu P, Liu Q, Torrent J, Barrón V, Jin C (2013) Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis. Earth Planet Sci Lett 369–370:271–283CrossRefGoogle Scholar
  31. Huang J, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Sun-Mack S, Ayers K (2010) African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J Geophys Res 115:D05202Google Scholar
  32. Huang J, Kang S, Zhang Q, Guo J, Chen P, Zhang G, Tripathee L (2013) Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere 92:871–881CrossRefGoogle Scholar
  33. Husar RB, Tratt DM, Schichtel BA, Falke SR, Li F, Jaffe D, Gassó S, Gill T, Laulainen NS, Lu F, Reheis MC, Chun Y, Westphal D, Holben BN, Gueymard C, McKendry I, Kuring N, Feldman GC, McClain C, Frouin RJ, Merrill J, DuBois D, Vignola F, Murayama T, Nickovic S, Wilson WE, Sassen K, Sugimoto N, Malm WC (2001) Asian dust events of April 1998. J Geophys Res 106(D16):18317–18330CrossRefGoogle Scholar
  34. IPCC (2007) Climate Change 2007: the physical basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  35. Jeong GY, Hillier S, Kemp RA (2008) Quantitative bulk and single-particle mineralogy of a thick Chinese loess–paleosol section: implications for loess provenance and weathering. Quat Sci Rev 27:1271–1287CrossRefGoogle Scholar
  36. Jeong GY, Hillier S, Kemp RA (2011) Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quat Res 75:245–255CrossRefGoogle Scholar
  37. Jickells TD, An Z, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao J, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71CrossRefGoogle Scholar
  38. Kocurek G, Lancaster N (1999) Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46:505–515CrossRefGoogle Scholar
  39. Li Z, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee SS, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54:866–929CrossRefGoogle Scholar
  40. Ling X, Guo W, Fu C (2014) Composite analysis of impacts of dust aerosols on surface atmospheric variables and energy budgets in a semiarid region of China. J Geophys Res 119(6):3107–3123Google Scholar
  41. Liu T (1985) Loess and environments. China Ocean Press, Beijing 251 ppGoogle Scholar
  42. Liu C, Masuda A, Okada A, Yabuki S, Fan Z (1994) Isotopic geochemistry of Quaternary deposits from the arid lands in northern China. Earth Planet Sci Lett 127:25–38CrossRefGoogle Scholar
  43. Liu C, Zhao T, Yang X, Liu F, Han Y, Luan Z, He Q, Rood M, Yuen W (2016) Observational study of formation mechanism, vertical structure, and dust aerosol emission of dust devils over the Taklimakan Desert, China. J Geophys Res 121(7):3608–3618Google Scholar
  44. Maher BA, Thompson R (1991) Mineral magnetic record of the Chinese loess and paleosols. Geology 19:3–6CrossRefGoogle Scholar
  45. Mahowald NM, Muhs DR, Levis S, Rasch RJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: Lasg glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111:D10202Google Scholar
  46. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  47. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1):1002CrossRefGoogle Scholar
  48. Rao W, Yang J, Chen J, Li G (2006) Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: implications for loess provenance and monsoon evolution. Chin Sci Bull 51:1401–1412Google Scholar
  49. Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. PNAS 98:7123–7127CrossRefGoogle Scholar
  50. Sassen K (2002) Indirect climate forcing over the western US from Asian dust storms. Geophys Res Lett 29(10):103–1–103–4CrossRefGoogle Scholar
  51. Sugden DE, McCulloch RD, Bory AJM, Hein AS (2009) Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period. Nat Geosci 2:281–285CrossRefGoogle Scholar
  52. Sun J (2002) Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet Sci Lett 203:845–859CrossRefGoogle Scholar
  53. Sun J (2005) Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: implications for provenance change. Earth Planet Sci Lett 240:454–466CrossRefGoogle Scholar
  54. Sun J, Zhu X (2010) Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: implications for provenance change. Earth Planet Sci Lett 290:438–447CrossRefGoogle Scholar
  55. Sun Y, Tada R, Chen J, Liu Q, Shin T, Tani A, Ji J, Yuko I (2008) Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau. Geophys Res Lett 35:L01804Google Scholar
  56. Sun J, Ding Z, Xia X, Sun M, Windley BF (2017) Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau. J Asian Earth Sci 155:21–34CrossRefGoogle Scholar
  57. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom. Science 300:958–961CrossRefGoogle Scholar
  58. Turkyilmaz A, Sevik H, Cetin M (2018) The use of perennial needles as biomonitors for recently accumulated heavy metals. Landsc Ecol Eng 14(1):115–120CrossRefGoogle Scholar
  59. Wang X, Dong Z, Yan P, Yang Z, Hu Z (2005) Surface sample collection and dust source analysis in northwestern China. Catena 59:35–53CrossRefGoogle Scholar
  60. Wang X, Zhou Z, Dong Z (2006) Control of dust aerosol emissions by geomorphic conditions, wind environments and land use in northern China: an examination based on dust storm frequency from 1960 to 2003. Geomorphology 29:292–308CrossRefGoogle Scholar
  61. Wang X, Xia D, Wang T, Xie X, Li J (2008) Dust sources in arid and semiarid China and southern Mongolia: impacts of geomorphological setting and surface materials. Geomorphology 97:583–600CrossRefGoogle Scholar
  62. Wang X, Lang L, Hua T, Wang H, Zhang C, Wang Z (2012a) Characteristics of the Gobi desert and their significance for dust emissions in the Ala Shan Plateau (Central Asia): an experimental study. J Arid Environ 81:35–46CrossRefGoogle Scholar
  63. Wang X, Lang L, Zhang C, Hua T, Wang H (2012b) The influence of near-surface winds on Sr isotope composition of aeolian sediments: a wind tunnel experiment. Chem Geol 308–309:10–17CrossRefGoogle Scholar
  64. Wang X, Lang L, Hua T, Zhang C, Xia D (2015) Geochemical and magnetic characteristics of aeolian transported materials under different near-surface wind fields: an experimental study. Geomorphology 239:106–113CrossRefGoogle Scholar
  65. Wang X, Cheng H, Che H, Sun J, Lu H, Qiang M, Hua T, Zhu B, Li H, Ma W, Lang L, Jiao L, Li D (2017a) Modern dust aerosol availability in northwestern China. Sci Rep 7:8741CrossRefGoogle Scholar
  66. Wang X, Lang L, Hua T, Zhang C, Li H (2017b) The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment. Front Earth Sci-Prc 4:1–9Google Scholar
  67. Xuan J, Sokolik IN, Hao J, Guo F, Mao H, Yang G (2004) Identification and characterization of sources of atmospheric mineral dust in East Asia. Atmos Environ 38:6239–6252CrossRefGoogle Scholar
  68. Yancheva G, Nowaczyk NR, Mingram J, Dulski P, Schettler G, Negendank JFW, Liu J, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77CrossRefGoogle Scholar
  69. Yang Y, Russell LM, Lou S, Liao H, Guo J, Liu Y, Singh B, Ghan SJ (2017) Dust-wind interactions can intensify aerosol pollution over eastern China. Nat Commun 8:15333CrossRefGoogle Scholar
  70. Zender C, Bian H, Newman D (2003) Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. J Geophys Res 108(D14):4416CrossRefGoogle Scholar
  71. Zhang X, Arimoto R, An Z (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102(D23):28041–28047CrossRefGoogle Scholar
  72. Zhang X, Gong S, Zhao T, Arimoto R, Wang Y, Zhou Z (2003) Sources of Asian dust and role of climate change versus desertification in Asian dust aerosol emission. Geophys Res Lett 30(24):2272Google Scholar
  73. Zhang B, Tsunekawa A, Tsubo M (2008) Contributions of sandy lands and stony deserts to long-distance dust aerosol emission in China and Mongolia during 2000–2006. Glob Planet Chang 60:487–504CrossRefGoogle Scholar
  74. Zhao T, Gong S, Zhang X, McKendry IG (2003) Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: implications for trans-Pacific transport. J Geophys Res Atmos 108(D23):8665CrossRefGoogle Scholar
  75. Zhao W, Sun Y, Balsam W, Lu H, Liu L, Chen J, Ji J (2014) Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: implications for sources and dispersal. Sci Rep 4:5837CrossRefGoogle Scholar
  76. Zheng X, Huang N (2009) Mechanics of wind-blown sand movements. Springer, Berlin HeidelbergCrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Xunming Wang
    • 1
    • 2
    Email author
  • Jimin Sun
    • 2
    • 3
  • Mingrui Qiang
    • 4
  • Caixia Zhang
    • 5
  • Danfeng Li
    • 1
  • Ting Hua
    • 5
  • Hui Li
    • 5
  • Lili Lang
    • 1
  • Linlin Jiao
    • 1
  • Diwen Cai
    • 1
  • Wenyong Ma
    • 1
  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental SciencesLanzhou UniversityLanzhouChina
  5. 5.Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations