Spatial and seasonal dynamics of elemental composition and mineralogy of intertidal and subtidal sediments in the Lima estuary (NW Portugal)

  • E. FernandesEmail author
  • N. Vitorino
  • M. J. Ribeiro
  • C. Teixeira
  • A. A. Bordalo
Original Paper


In estuaries, the mineral distribution in the top sediment layer results from the combined effect of fluvial and coastal inputs and may present seasonal patterns owing to forcing, e.g., floods, storms, waves, and tides. Our main goal was to study the estuarine sedimentological components, including textural and geochemical parameters, in order to characterize the seasonal and spatial dynamics of subtidal and intertidal sediments in a highly energetic temperate estuary (River Lima, NW Portugal). Subtidal sediments were usually anoxic within the middle estuary and presented higher amounts of clay and silt than intertidal sediments. Oxygen, silicon, carbon, aluminum, and potassium were the most abundant elements. The amount of silicon and carbon was related to the clay and silt content of the sediments. The mineralogical composition of sediments reflected the lithology of the watershed, with the most representative minerals being quartz, microcline (k-alkaloid feldspar), and albite (plagioclase), in line with the results obtained in the elementary characterization. The lower stretches were particularly rich in iron silicates and anatase. No clear seasonal variation was found for sediment elemental and mineralogical compositions. Factor analysis explained 80% of the elemental origin, being 33% related to terrigenous origin, 24% to marine sediments, and 15% to anthropogenic inputs.


Elemental composition Mineralogy Intertidal and subtidal sediments Seasons Lima estuary 



This work was partially funded by the Strategic Funding UID/Multi/04423/2019 through national funds provided by the Portuguese Science Foundation (FCT) and European Regional Development Fund (ERDF), in the framework of the program PT2020. C. Teixeira also acknowledges FCT for a post-doctoral grant (ref. SFRH/BPD/110730/2015) through POCH, co-founded by MCTES and the European Social Fund. The authors acknowledge all colleagues involved in sample collection. The SEM and XRD facilities were funded by FEDER Funds through QREN—Aviso SAIECT-IEC/2/2010, Operação NORTE-07-0162-FEDER-000050.

Supplementary material

12517_2019_4569_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1.26 mb)


  1. Abdullah NA, Abdullah LI, Shazili NAM, Sokiman S (2015) Clay minerals on recent surface estuarine sediments from selected rivers of Terengganu, Malaysia. J Earth Sci 1(1):8–16Google Scholar
  2. Administração da Região Hidrográfica do Norte (ARH Norte), Agência Portuguesa do Ambiente (APA) (2012) Plano de Gestão da Região Hidrográfica do Minho e Lima RH1—Relatório Técnico. Comissão Europeia, PortoGoogle Scholar
  3. Alves MIC (2004) A sedimentação fluvial cenozoica na região do entre-Douro-e-Minho (NW de Portugal). In: Geomorfologia do Noroeste da Península Ibérica 2002. GEDES—Gabinete de Estudos de Desenvolvimento e Ordenamento do Território, Porto, pp 93–115Google Scholar
  4. American Public Health Association (APHA), American Water Works Association and Water Pollution Control Federation (2005) Standard methods for examination of water and wastewater, 21th edn. American Public Health Association, Washington DCGoogle Scholar
  5. Anaya-Gregorio A, Armstrong-Altrin JS, Machain-Castillo ML, Montiel-García PC, Ramos-Vázquez MA (2018) Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. J Palaeogeogr 7(3):253–271Google Scholar
  6. Armendáriz M, López-Guijarro R, Quesada C, Pin C, Bellido F (2008) Genesis and evolution of a syn-orogenic basin in transpression: insights from petrography, geochemistry and Sm-Nd systematics in the Variscan Pedroches basin (Mississippian, SW Iberia). Tectonophysics 461:395–413CrossRefGoogle Scholar
  7. Azam MM, Tripathi JK (2016) Recent contributions in the field of sediment geochemistry. Proc Indian Nat Sci Acad Spl Issue 82(3):805–815Google Scholar
  8. Bojakowska I (2016) Phosphorus in lake sediments of Poland—results of monitoring research. Limnol Rev 16(1):15–25CrossRefGoogle Scholar
  9. Bouchez J, Gaillardet J, France-Lanord C, Maurice L, Dutra-Maia P (2011) Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles. Geoch Geophy Geosy 12(3):1–24Google Scholar
  10. Brils K (2008) Sediment monitoring and the European water framework directive. Ann Ist Super Sanità 44(3):218–223Google Scholar
  11. Camacho S, Moura D, Connor S, Boski T, Gomes A (2014) Geochemical characteristics of sediments along the margins of an Atlantic-Mediterranean estuary (the Guadiana, Southeast Portugal): spatial and seasonal variations. J Integ Coast Zone Manag 14(1):129–148Google Scholar
  12. Caraballo MA, Michel FM, Hochella MF Jr (2015) The rapid expansion of environmental mineralogy in unconventional ways: beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. Am Mineral 100(1):14–25CrossRefGoogle Scholar
  13. Cardoso R, Araújo MF, Freitas MC, Fatela F (2008) Geochemical characterisation of sediments from marginal environments of Lima Estuary (NW Portugal). e-Terra 5(6):1–11 Accessed 1 Sept 2017Google Scholar
  14. Carvalhido RP, Pereira DI, Cunha PP, Buylaert JP, Murray AS (2014) Characterization and dating of coastal deposits of NW Portugal (Minho e Neiva area): a record of climate, eustasy and crustal uplift during the Quaternary. Quatern Int 328-329:94–106CrossRefGoogle Scholar
  15. CGP (Carta Geológica de Portugal) Escala 1/1 000 000 (2010) DGEG (Direcção-Geral de Energia e Geologia)Google Scholar
  16. Corredeira C, Araújo MF, Jouanneau JM (2008) Copper, zinc and lead impact in SW Iberian shelf sediments: an assessment of recent historical changes in Guadiana river basin. Geochem J 42:319–329CrossRefGoogle Scholar
  17. Dyar MD, Gunter ME, Tasa D (2008) Mineralogy and optical mineralogy. Mineralogical Society of America, ChantillyGoogle Scholar
  18. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62(4):344–359CrossRefGoogle Scholar
  19. Gredilla A, Stoichev T, Vallejuelo SFO, Rodriguez-Iruretagoiena A, Morais P, Arana G, Diego A, Madariaga JM (2015) Spatial distribution of some trace and major elements in sediments of the Cávado estuary (Esposende, Portugal). Mar Pollut Bull 99(1–2):305–311CrossRefGoogle Scholar
  20. Guagliardi I, Apollaro C, Scarciglia F, De Rosa R (2013) Influence of particle-size on geochemical distribution of stream sediments in the Lese river catchment, southern Italy. Biotechnol Agron Soc Environ 17(1):43–55Google Scholar
  21. Hernández-Hinojosa V, Montiel-García PC, Armstrong-Altrin JS, Nagarajan R, Kasper-Zubillaga JJ (2018) Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpath J Earth Environ Sci 13(1):161–174Google Scholar
  22. Ho HH, Swennen R, Van Damme A (2010) Distribution and contamination status of heavy metals in estuarune sediments near Cua Ong Harbor, Ha Long Bay, Vietnam. Geol Belg 13(1–2):37–47Google Scholar
  23. Hopkins RJ, Desyaterik Y, Tivanski AV, Zaveri RA, Berkowitz CM, Tyliszczak T, Gilles MK, Laskin A (2008) Chemical speciation of sulfur in marine cloud droplets and particles: analysis of individual particles from the marine boundary layer over the California current. J Geophys Res 113(D04209):1–15Google Scholar
  24. Inácio M, Pereira V, Pinto M (2008) The soil geochemical atlas of Portugal: overview and applications. J Geochem Explor 98:22–33CrossRefGoogle Scholar
  25. INAG (Instituto da Água) (2009) Questões significativas da gestão da água—região hidrográfica do Minho e Lima. Accessed 1 April 2017
  26. Jickells TD, Andrews JE, Parkes DJ (2016) Direct and indirect effects of estuarine reclamation on nutrient and metal fluxes in the global coastal zone. Aquat Geochem 22(4):337–348CrossRefGoogle Scholar
  27. Koukina S, Vetrov A, Belyaev N (2012) Ecological research of Arctic restricted exchange environments (Kandalaksha Bay, White Sea, Russian Arctic). In: Ali M (ed) Diversity of ecosystems. InTech Europe, Rijeka, pp 199–220Google Scholar
  28. Lalli CM, Parsons TR (2006) Energy flow and mineral cycling. In: Biological oceanography: an introduction, 2nd edn. Elsevier Butterworth-Heinemann, Oxford, pp 112–146Google Scholar
  29. Libes S (2009) Introduction to marine biogeochemistry, 2nd edn. Academic Press, LondonGoogle Scholar
  30. Lindeburg MR (2017) Environmental engineering—water quality. In: FE civil review. PPI, Professional Publications, Inc., USA, pp 13-1–13-8Google Scholar
  31. LNEG (Laboratório Nacional de Energia e Geologia) (2017) I.P., geoPortal. Accessed 27 March 2017
  32. Mali M, Dell’Anna MM, Mastrorilli P, Damiani L, Ungaro N, Belviso C, Fiore S (2015) Are conventional statistical techniques exhaustive for defining metal background concentrations in harbour sediments? A case study: the coastal area of Bari (Southeast Italy). Chemosphere 138:708–717CrossRefGoogle Scholar
  33. Marathe RB (2012) XRD and SEM analysis of Tapti River sediment: a case study. Arch Appl Sci Res 4(1):78–84Google Scholar
  34. Martins R, Azevedo MR, Mamede R, Sousa B, Freitas R, Rocha F, Quintino V, Rodrigues AM (2012) Sedimentary and geochemical characterization and provenance of the Portuguese continental shelf soft-bottom sediments. J Marine Syst 91:41–52CrossRefGoogle Scholar
  35. Mil-Homens M, Vale C, Raimundo J, Pereira P, Brito P, Caetano M (2014) Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal. Mar Pollut Bull 84:135–146CrossRefGoogle Scholar
  36. Négrel P, Merly C, Gourcy L, Cerdan O, Petelet-Giraud E, Kralik M, Klaver G, Wirdum G, Vegter J (2014) Soil–sediment–river connections: catchment processes delivering pressures to river catchments. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds)Risk-informed management of European river basins. Springer-Verlag, Berlin Heidelberg, pp 21–52CrossRefGoogle Scholar
  37. Oliveira A, Rocha F, Rodrigues A, Dias JA (2000) The fine sediments as dynamic sedimentary tracers (NW Iberian margin). In: Book of Abstract of 3° Simpósio sobre a Margem Continental Ibérica Atlântica/3rd Symposium on the Iberian Atlantic Margin. Universidade do Algarve, Faro, pp. 399–400Google Scholar
  38. Oliveira A, Rocha F, Rodrigues A, Jouanneau J, Dias A, Weber O, Gomes C (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog Oceanogr 52:233–247CrossRefGoogle Scholar
  39. Pastor-Galán D, Gutiérrez-Alonso G, Fernández-Suárez J, Murphy JB, Nieto F (2013) Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian zone. Lithos 182-183:211–228CrossRefGoogle Scholar
  40. Ramos S, Ré P, Bordalo AA (2010) Recruitment of flatfish species to an estuarine nursery habitat (Lima estuary, NW Iberian Peninsula). J Sea Res 64(4):473–486CrossRefGoogle Scholar
  41. Ramos-Vázque MA, Armstrong-Altrin JS, Machain-Castillo ML, Gío-Argáez FR (2018) Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. J S Am Earth Sci 88:480–496CrossRefGoogle Scholar
  42. Solá AR, Chichorro M, Pereira MF, Medina J, Linnemann U, Hofmann M, Silva JB (2011) Idades U-Pb dos zircões detríticos do grupo das Beiras—implicações para a evolução do SW da Ibéria durante o neoproterozóico. In: Livro de Actas do VIII Congresso Ibérico de Geoquímica—XVII Semana de Geoquímica. Instituto Politécnico de Castelo Branco, Castelo Branco, pp 1–7Google Scholar
  43. Sundararajan M, Natesan U (2010) Geochemistry of elements in core sediments near point Claimere, the southeast coast of India. Int J Environ Res 4(3):379–394Google Scholar
  44. Tapia-Fernandez HJ, Armstrong-Altrin JS, Selvaraj K (2017) Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, southwestern Gulf of Mexico, Mexico. J S Am Earth Sci 76:346–361CrossRefGoogle Scholar
  45. Teixeira C, Medeiros A (1970) Carta Geológica de Portugal 1/50000—Folha 05-A—Viana do Castelo. Serviços Geológicos de Portugal, LisboaGoogle Scholar
  46. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32CrossRefGoogle Scholar
  47. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  48. Valente T, Fatela F, Moreno J, Moreno F, Guise L, Patinha C (2009) A comparative study of the influence of geochemical parameters on the distribution of foraminiferal assemblages in two distinctive tidal marshes. J Coastal Res SI 56:1439–1443Google Scholar
  49. Venkatramanan S, Ramkumar T, Anithamary I (2013) Distribution of grain size, clay mineralogy and organic matter of surface sediments from Tirumalairajanar estuary, Tamilnadu, east coast of India. Arab J Geosci 6(5):1371–1380CrossRefGoogle Scholar
  50. Viveen W, Schoorl JM, Veldkamp A, van Balend RT, Vidal-Romanib JR (2013) Fluvial terraces of the northwest Iberian lower Minõ River. J Maps 9(4):513–522CrossRefGoogle Scholar
  51. White WM (2013) Trace elements in igneous processes. In: Geochemistry, 1st edn. Wiley-Blackwell, Oxford, pp 259–313Google Scholar
  52. Wolanski E, Elliott M (2016) Estuarine ecohydrology—an introduction, 2nd edn. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS)University of PortoPortoPortugal
  2. 2.School of Technology and ManagementPolytechnic Institute of Viana do Castelo (ESTG-IPVC)Viana do CasteloPortugal
  3. 3.Universidade de Aveiro (UA)AveiroPortugal
  4. 4.UIDM (Unidade de Investigação & Desenvolvimento em Materiais)—School of Technology and ManagementPolytechnic Institute of Viana do Castelo (ESTG-IPVC)Viana do CasteloPortugal
  5. 5.Centre of Marine and Environmental Research (CIIMAR)MatosinhosPortugal

Personalised recommendations