Advertisement

Probability distribution analysis of extreme rainfall events in a flood-prone region of Mumbai, India

  • Amit Sharad Parchure
  • Shirish Kumar Gedam
Original Paper
  • 40 Downloads

Abstract

Mumbai, being a coastal city surrounded by sea and creeks, is vulnerable to severe flooding almost every year owing to intense rainfall. Therefore, it is vital to quantify the magnitude of extreme rainfall events, which mainly depends upon the suitability of the derived distribution and the selection of a technique for processing and analysing data. The magnitude is often estimated using window-based approach of rainfall, which does not represent actual rainfall events since the duration of the rainfall is prefixed in this approach. Hence, the goal is to determine the best-fit probability distribution for extreme storms using the ‘storm event analysis’ method to overcome this limitation. The distribution is analysed with two-parameter [Lognormal (LN), Gamma (G), Gumbel (GUM) and Weibull (W)] and three-parameter [generalised extreme value (GEV), generalised Pareto (GP), Log Pearson 3 (LP3) and Frechet (F)] distribution functions on two sets [maximum extreme volume (MEV) and the maximum peak intensity (MPI)] of extreme events. Goodness-of-fit tests are applied to the distribution functions of the extreme storm series (2006–2016) of 26 meteorological stations. The best score results show that the GEV distribution fits best for 29% of the stations, and 27% and 22% of the stations showed the best fit for the F and GP distributions, respectively. On a basin scale, MEV events are best described by the GEV distribution while GP or F distributions show the best fits for MPI events. However, each station must be analysed individually as none of GEV, GP or F is always the best-fitting distribution function.

Keywords

Goodness-of-fit tests Maximum extreme volume Maximum peak intensity Probability distribution analysis Storm event analysis 

Notes

Acknowledgements

The authors thank the MCGM for providing rain gauge data and the India Meteorological Department, Mumbai, for their comments and suggestions, which significantly contributed to improving the clarity of this paper.

References

  1. Acero FJ, Parey S, Hoang TTH, Dacunha-Castelle D, García JA, Gallego MC (2017) Non-stationary future return levels for extreme rainfall over Extremadura (southwestern Iberian Peninsula). Hydrol Sci J 62:1394–1411CrossRefGoogle Scholar
  2. Acero FJ, Parey S, García JA, Dacunha-Castelle D (2018) Return level estimation of extreme rainfall over the Iberian Peninsula: comparison of methods. Water 10:179.  https://doi.org/10.3390/w10020179 CrossRefGoogle Scholar
  3. Adams BJ, Papa F (2000) Urban stormwater management planning with analytical probabilistic models. John Wiley & Sons, Inc, TorontoGoogle Scholar
  4. Alahmadi F, Rahman NA, Abdulrazzak M (2014) Evaluation of the best fit distribution for partial duration series of daily rainfall in Madinah, western Saudi Arabia. Proc IASH 364:159–163.  https://doi.org/10.5194/piahs-364-159-2014 CrossRefGoogle Scholar
  5. Alam MA, Emura K, Farnham C, Yuan J (2018) Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh. Climate 6(1):9.  https://doi.org/10.3390/cli6010009 CrossRefGoogle Scholar
  6. Alghazali NO, Alawadi DA (2014) Fitting statistical distributions of monthly rainfall for some Iraqi stations. Civ Environ Res 6(6):40–46Google Scholar
  7. Amin MT, Rizwan M, Alazba AA (2016) A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan. Open Life Sciences 11(1):432–440.  https://doi.org/10.1515/biol-2016-0057
  8. Awadallah AG, Saad H, Elmoustafa A, Hassan A (2015) Reliability assessment of water structures subject to data scarcity using the SCS-CN model. Hydrol Sci J 61:696–710.  https://doi.org/10.1080/02626667.2015.1027709 CrossRefGoogle Scholar
  9. Back ÁJ, Henn A, Oliveira JLR (2011) Heavy rainfall equations for Santa Catarina, Brazil. Rev Bras Ciência do Solo 35(6):2127–2134.  https://doi.org/10.1590/s0100-06832011000600027 CrossRefGoogle Scholar
  10. Bellu A, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2016) A framework model for the dimensioning and allocation of a detention basin system: the case of a flood-prone mountainous watershed. J Hydrol 533:567–580CrossRefGoogle Scholar
  11. Berk M, Spacˇkova O, Straub D (2017) Probabilistic design storm method for improved flood estimation in ungauged catchments. Water Resour Res 53:701–722.  https://doi.org/10.1002/2017WR020947 CrossRefGoogle Scholar
  12. Bhakar SR, Iqbal M, Devanda M, Chhajed N, Bansal AK (2008) Probability analysis of rainfall at Kota. Journal of  Agricultural Research 42:201–206. https://bioinfopublication.org/files/articles/8_53_14_IJAS.pdfGoogle Scholar
  13. Burgess CP, Taylor MA, Stephenson T, Mandal A (2015) Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J Hydrol 3:424–443Google Scholar
  14. Caldeira TL, Beskow S, de Mello CR et al (2015) Modelagem probabilística de eventos de precipitação extrema no estado do Rio Grande do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental 19(3):197–203.  https://doi.org/10.1590/1807-1929/agriambi.v19n3p197-203 CrossRefGoogle Scholar
  15. Carbone M, Turco M, Burnetti G, Piro P (2015) Minimum inter-event time to identify independent rainfall events in urban catchment scale. Adv Mater Res 1073(1076):1630–1633Google Scholar
  16. Cetin M (2015) Determining the bioclimatic comfort in Kastamonu City. Environ Monit Assess 187:640 http://link.springer.com/article/10.1007/s10661-015-4861-3 CrossRefGoogle Scholar
  17. Cetin M (2016) Determination of bioclimatic comfort areas in landscape planning: a case study of Cide coastline. Turkish Journal of Agriculture-Food Science and Technology 4:800–804.  https://doi.org/10.24925/turjaf.v4i9.800-804.872 CrossRefGoogle Scholar
  18. Cetin M, Sevik H (2016) Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environ Monit Assess 188:52 http://link.springer.com/article/10.1007/s10661-015-5064-7 CrossRefGoogle Scholar
  19. Cetin M, Sevik H, Saat A (2017) Indoor air quality: the samples of Safranbolu Bulak Mencilis cave. Fresenius Environ Bull 26:5965–5970Google Scholar
  20. Cetin M, Adiguzel F, Kaya O, Sahap A (2018a) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20:361–375 http://link.springer.com/article/10.1007/s10668-016-9885-5 CrossRefGoogle Scholar
  21. Cetin M, Onac AK, Sevik H, Canturk U, Akpinar H (2018b) Chronicles and geoheritage of the ancient Roman city of Pompeiopolis: a landscape plan. Arab J Geosci 11:798CrossRefGoogle Scholar
  22. Cetin M, Sevik H, Yigit N (2018c) Climate type-related changes in the leaf micromorphological characters of certain landscape plants. Environ Monit Assess 190:404CrossRefGoogle Scholar
  23. Cetin M, Zeren I, Sevik H, Cakir C, Akpinar H (2018d) A study on the determination of the natural park's sustainable tourism potential. Environ Monit Assess 190:167CrossRefGoogle Scholar
  24. Chang H, Jung I-W, Steele M, Gannett M (2012) Spatial patterns of march and September streamflow trends in Pacific northwest streams, 1958-2008. Geogr Anal 44:177–201.  https://doi.org/10.1111/j.1538-4632.2012.00847.x CrossRefGoogle Scholar
  25. Coutinho JV, Almeida CDN, Leal AMF, Barbosa LR (2014) Characterization of sub-daily rainfall properties in three raingauges located in Northeast Brazil. Proc IAHS 364:345–350.  https://doi.org/10.5194/piahs-364-345-2014 CrossRefGoogle Scholar
  26. Devkota S, Shakya NM, Sudmeier-Rieux K, Jaboyedoff M, Van Westen CJ, Mcadoo BG, Adhikari A (2018) Development of monsoonal rainfall intensity-duration-frequency (IDF) relationship and empirical model for data-scarce situations: the case of the Central-Western Hills (Panchase region) of Nepal. Hydrology 5:27.  https://doi.org/10.3390/hydrology5020027 CrossRefGoogle Scholar
  27. Dilmi MD, Mallet C, Barthes L, Chazottes A (2017) Data-driven clustering of rain events: microphysics information derived from macro-scale observations. Atmos Meas Tech 10:1557–1574.  https://doi.org/10.5194/amt-10-1557-2017 CrossRefGoogle Scholar
  28. Dunkerley D (2008) Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrol Process 22:4415–4435.  https://doi.org/10.1002/hyp.7045 CrossRefGoogle Scholar
  29. Estévez J, Gavilán P, García-Marín AP, Zardi D (2015) Detection of spurious precipitation signals from automatic weather stations in irrigated areas. Int J Climatol 35:1556–1568.  https://doi.org/10.1002/joc.4076 CrossRefGoogle Scholar
  30. Gado TA, Nguyen VTV (2016) An at-site flood estimation method in the context of nonstationary I. a simulation study. J Hydrol 535:710–721CrossRefGoogle Scholar
  31. Ghosh S, Manindra KR, Soma CB (2016) Determination of the best fit probability distribution for monthly rainfall data in Bangladesh. American Journal of Mathematics and Statistics 6(4):170–174.  https://doi.org/10.5923/j.ajms.20160604.05
  32. González-Álvarez A, Viloria-Marimón OM, Coronado-Hernández OE, Vélez-Pereira AM, Tesfagiorgis K, Coronado-Hernández JR (2019) Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean region. Water 11:358.  https://doi.org/10.3390/w11020358 CrossRefGoogle Scholar
  33. Haile AT, Rientjes THM, Habib E, Jetten V, Gebremichael M (2011) Rain event properties at the source of the Blue Nile River. Hydrol Earth Syst Sci 15:1023–1034.  https://doi.org/10.5194/hess-15-1023-2011 CrossRefGoogle Scholar
  34. Hanel M, Máca P (2014) Spatial variability and interdependence of rain event characteristics in the Czech Republic. Hydrol Process n/a-n/a.  https://doi.org/10.1002/hyp.9845
  35. Jun C, Qin X, Gan TY, Tung YK, de Michele C (2017) Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design. J Hydrol 553:374–383.  https://doi.org/10.1016/j.jhydrol.2017.08.004 CrossRefGoogle Scholar
  36. Khan M (2017) Fitting hourly rainfall using various distribution and evaluation of best fit for Mumbai region. International Journal of Research in Engineering and Innovation 1(3):65–69. https://www.ijrei.com/controller/aviation/[8]%20vol-1%20issue-3.pdfGoogle Scholar
  37. Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate data and monitoring WCDMP-no. 72. WMO-TD 1500:56Google Scholar
  38. Kumar A (2000) Prediction of annual maximum daily rainfall of Ranichauri (Tehri Garhwal) based on probabilityanalysis. Indian Journal of Soil Conservation 28(2):178–180. https://www.cabdirect.org/cabdirect/abstract/20013100413
  39. Lairenjam C, Huidrom S, Bandyopadhyay A, Bhadra A (2016) Assessment of probability distribution of rainfall of north east region (NER) of India. Journal of Research in Environmental and Earth Science 2(9):12–18. http://www.questjournals.org/jrees/papers/vol2-issue9/C291218.pdfGoogle Scholar
  40. Larsen ML, Teves JB (2015) Identifying individual rain events with a dense disdrometer network. Adv Meteorol 2015:1–12.  https://doi.org/10.1155/2015/582782 CrossRefGoogle Scholar
  41. Lei M, Niyogi D, Kishtawal C, Pielke RA Sr, Beltrán-Przekurat A, Nobis TE, Vaidya SS (2008) Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmos Chem Phys 8:5975–5995.  https://doi.org/10.5194/acp-8-5975-2008 CrossRefGoogle Scholar
  42. Löwe R, Madsen H, McSharry P (2016) Objective classification of rainfall in northern Europe for online operation of urban water systems based on clustering techniques. Water 8:87.  https://doi.org/10.3390/w8030087 CrossRefGoogle Scholar
  43. Madsen H, Mikkelsen PS, Rosbjerg D, Harremoës P (2002) Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics. Water Resour Res 38:11–21.  https://doi.org/10.1029/2001wr001125 CrossRefGoogle Scholar
  44. Medina-Cobo MT, García-Marín AP, Estévez J, Ayuso-Muñoz JL (2016) The identification of an appropriate minimum inter-event time (MIT) based on multifractal characterization of rainfall data series. Hydrol Process 30:3507–3517.  https://doi.org/10.1002/hyp.10875 CrossRefGoogle Scholar
  45. Mły’nski D, Wałega A, Petroselli A, Tauro F, Cebulska M (2019) Estimating maximum daily precipitation in the upper Vistula Basin. Poland. Atmosphere 10.  https://doi.org/10.3390/atmos10020043 CrossRefGoogle Scholar
  46. Mohamed TM, Ibrahim AAA (2015) Fitting probability distributions of annual rainfall in Sudan. J Sci Technol 17(2):34–39Google Scholar
  47. Nandargi S, Gaur A, Mulye SS (2016) Hydrological analysis of extreme rainfall events and severe rainstorms over Uttarakhand, India. Hydrol Sci J 61:2145–2163.  https://doi.org/10.1080/02626667.2015.1085990 CrossRefGoogle Scholar
  48. Nayak MA, Ghosh S (2013) Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier. Theor Appl Climatol 114:583–603.  https://doi.org/10.1007/s00704-013-0867-3 CrossRefGoogle Scholar
  49. Nguyen TH, El Outayek S, Lim SH, Nguyen VTV (2017) A systematic approach to selecting the best probability models for annual maximum rainfalls – a case study using data in Ontario (Canada). J Hydrol 553:49–58.  https://doi.org/10.1016/j.jhydrol.2017.07.052 CrossRefGoogle Scholar
  50. Nojumuddin NS, Yusof F, Yusop Z (2016) Determination of minimum inter-event time for storm characterisation in Johor, Malaysia. J Flood Risk Manag 11:S687–S699.  https://doi.org/10.1111/jfr3.12242 CrossRefGoogle Scholar
  51. Parchure AS, Gedam SK (2019) Self-organising maps for rain event classification in Mumbai City, India. ISH Journal of Hydraulic Engineering 25(2):1–16.  https://doi.org/10.1080/09715010.2019.1581099
  52. Park M, Yoo C, Kim H, Jun C (2014) Bivariate frequency analysis of annual maximum rainfall event series in Seoul, Korea. J Hydrol Eng 19:1080–1088.  https://doi.org/10.1061/(asce)he.1943-5584.0000891 CrossRefGoogle Scholar
  53. Pham VH, Lee BR (2014) An image segmentation approach for fruit defect detection using k-means clustering and graph-based algorithm. Vietnam Journal of Computer Science 2(1):25–33.  https://doi.org/10.1007/s40595-014-0028-3 CrossRefGoogle Scholar
  54. Rana A, Uvo CB, Bengtsson L, Parth Sarthi P (2011) Trend analysis for rainfall in Delhi and Mumbai, India. Clim Dyn 38:45–56.  https://doi.org/10.1007/s00382-011-1083-4 CrossRefGoogle Scholar
  55. Restrepo-Posada PJ, Eagleson PS (1982) Identification of independent rainstorms. J Hydrol 55:303–319.  https://doi.org/10.1016/0022-1694(82)90136-6 CrossRefGoogle Scholar
  56. Sabarish RM, Narasimhan R, Chandhru AR, Suribabu CR, Sudharsan J, Nithiyanantham S (2017) Probability analysis for consecutive-day maximum rainfall for Tiruchirapalli City (South India, Asia). Appl Water Sci 7:1033–1042.  https://doi.org/10.1007/s13201-015-0307-x CrossRefGoogle Scholar
  57. Sanches Fernandes LF, Terêncio DPS, Pacheco FAL (2015) Rainwater harvesting systems for low demanding applications. Sci Total Environ 529:91–100CrossRefGoogle Scholar
  58. Sharma MA, Singh JB (2010) Use of probability distribution in rainfall analysis. New York Science Journal 3(9):40–49. http://www.sciencepub.net/newyork/ny0309/07_3294ny0309_40_49_02.pdfGoogle Scholar
  59. Sherly MA, Karmakar S, Chan T, Rau C (2016) Design rainfall framework using multivariate parametric-nonparametric approach. J Hydrol Eng 21:4015049.  https://doi.org/10.1061/(asce)he.1943-5584.0001256 CrossRefGoogle Scholar
  60. Singh RK (2001) Probability analysis for prediction of annual maximum rainfall of eastern Himalaya (Sikkim mid hills). Indian Journal Soil Conservation 29(3):263–265. https://eurekamag.com/research/003/896/003896626.phpGoogle Scholar
  61. Singh J, Sekharan S, Karmakar S, Ghosh S, Zope PE, Eldho TI (2017) Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: is statistical forecasting futile? J Earth Syst Sci 126:38.  https://doi.org/10.1007/s12040-017-0817-z CrossRefGoogle Scholar
  62. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2017) Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J Hydrol 550:318–330CrossRefGoogle Scholar
  63. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Moura JP, Pacheco FAL (2018) Rainwater harvesting in catchments for agro-forestry uses: a study focused on the balance between sustainability values and storage capacity. Sci Total Environ 613-614:1079–1092CrossRefGoogle Scholar
  64. Vaz T, Zêzere JL, Pereira S, Oliveira SC, Garcia RA, Quaresma I (2018) Regional rainfall thresholds for landslide occurrence using a centenary database. Nat Hazards Earth Syst Sci 18:1037–1054.  https://doi.org/10.5194/nhess-18-1037-2018 CrossRefGoogle Scholar
  65. Vivekanandan N (2015) Flood frequency analysis using method of moments and L-moments of probability distributions. Cogent Engineering 2(1):1-10.  https://doi.org/10.1080/23311916.2015.1018704
  66. Yoo C, Park C, Jun C (2016) Evaluation of the concept of critical rainfall duration by bivariate frequency analysis of annual maximum independent rainfall event series in Seoul, Korea. J Hydrol Eng 21:5015016.  https://doi.org/10.1061/(asce)he.1943-5584.0001259 CrossRefGoogle Scholar
  67. Zope PE, Eldho TI, Jothiprakash V (2016) Development of rainfall intensity duration frequency curves for Mumbai City, India. J Water Resour Prot 08:756–765.  https://doi.org/10.4236/jwarp.2016.87061 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Amit Sharad Parchure
    • 1
    • 2
  • Shirish Kumar Gedam
    • 1
  1. 1.Centre of Studies in Resources EngineeringIndian Institute of Technology (IIT)BombayIndia
  2. 2.PuneIndia

Personalised recommendations