Advertisement

The Sidi El Hemissi Triassic “ophites” (Souk Ahras, NE Algeria): petrology, geochemistry, and petrogenesis

  • Halima Saadia Zanouda
  • Rabah LaouarEmail author
  • Sihem Salmi-Laouar
  • Amar Sebai
  • Chrystèle Verati
  • Salah Bouhlel
  • Adrian J. Boyce
Original Paper
  • 20 Downloads

Abstract

The Sidi El Hemissi region, Souk-Ahras, is part of the Tellian Atlas where the Triassic sediments tectonically outcrop under the Tellian nappes of the Maghrebide chain. Mafic rocks, mainly gabbros and dolerites, called “ophites,” are interbedded as a ~ 200 × 30-m lenticular body within the Triassic gypsum-rich formation. These rocks show granular, microgranular, and microlithic textures and are composed of plagioclase, amphibole, pyroxene, and scarce olivine crystals. Albitization is the main alteration process, though chloritization, calcitization, and epidotization of ferromagnesian minerals can also be occasionally observed. The major, trace, and rare earth element studies show that these mafic rocks display relatively low P2O5 (less than 0.2 wt%) and moderate to low TiO2 contents (less than 2 wt%) and exhibit low-Ti continental tholeiitic basalt affinity. They are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) compared with high field strength elements (HFSE) and heavy rare earth elements (HREE). This, along with the observed weak Nb and Ce anomalies and the low-Ti contents, suggests an enriched mantle source for the generation of the magma, which likely underwent crustal contamination before emplacement within the Triassic sediments.

The petrological and geochemical features of the Sidi El Hemissi ophites show many similarities with the basaltic rocks emplaced during the Late Triassic–Early Jurassic times, now cropping out in north-western Africa, south-western Europe, north-eastern, and south-eastern America. This large magmatic activity is believed to be related to the continental rifting associated with the early stages of the Pangea breakup.

Keywords

Ophites Geochemistry Tholeiites Continental flood basalts Souk-Ahras Algeria 

Notes

Acknowledgments

The authors wish to thank Dr. A. Chabbi for his help and assistance during field work. Their gratitude goes also to Mr. Allem Djaafar for sample preparation and thin section confections. The Badji Mokhtar University—Annaba is also thanked for providing short-period grant to HS Zanouda to travel to Tunisia and perform mineralogical study at the Laboratoire des Ressources Minerales et Environnement, University of Tunis El Manar. The authors are very grateful to an anonymous reviewer who carefully reviewed the manuscript and helped improve the quality of this manuscript.

References

  1. Albarède F (1992) How deep do common basaltic magmas form and differentiate? J Geophys Res 97:10997–11009CrossRefGoogle Scholar
  2. Alibert C (1985) A Sr–Nd isotope and REE study of late Triassic dolerites from the Pyrenees (France) and the Messejana dyke (Spain and Portugal). Earth Planet Sci Lett 73:81–90CrossRefGoogle Scholar
  3. Armienti P, Corazzato C, Groppelli G, Natoli E, Pasquarè G (2003) Geological and Petrographical study of Montecampione Triassic subvolcanic bodies (Southern Alps, Italy): preliminary geodynamic results. Boll Soc Geol It Vol Spec 2:67–78Google Scholar
  4. Barca D, Cirrincione R, De Vuono E, Fiannacca P, Ietto F, Lo Giudice A (2010) The Triassic rift system in the northern Calabrian–Peloritani Orogen: evidence from basaltic dyke magmatism in the San Donato Unit. Period Mineral 79:61–72Google Scholar
  5. Bastida J, Besteiro J, Reventos MM, Lago M, Pocovi A (1989) Los basaltos alcalinos subvolcánicos espilitizados de Arándiga (provincia de Zaragoza): estudio mineralógico y geoquímico. Acta Geol Hisp 24:115–130Google Scholar
  6. Battles DA, Barton MD (1995) Arc-related sodic hydrothermal alteration in the western United States. Geology 23:913–916CrossRefGoogle Scholar
  7. Bellieni G, Fioretti AM, Marzoli A, Visonà D (2010) Permo-Paleogene magmatism in the Eastern Alps Rend Fis Acc Lincei, vol 21, pp 51–71Google Scholar
  8. Bensalah MK, Youbi N, Mahmoudi A, Bertrand H, Mata J, El Hachimi H, Madeira J, Martins L, Marzoli A, Bellon H, Medina F, Karroum M, Karroum LA, Ben Abbou M (2011) The Central Atlantic Magmatic Province (CAMP) volcanic sequences of Berrechid and Doukkala basins (Western Meseta, Morocco): volcanology and geochemistry. Comunicações Geológicas 98:15–27Google Scholar
  9. Bertrand H (1991) The Mesozoic tholeiitic province of northwest Africa: a volcanotectonic record of the early opening of Central Atlantic. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings. the Phanerozoic African plate. Springer-Verlag, pp 147–191Google Scholar
  10. Bertrand H, Dostal J, Dupuy C (1982) Geochemistry of early Mesozoic tholeiites from Morocco. Earth Planet Sci Lett 58:225–239CrossRefGoogle Scholar
  11. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340(6135):941–945CrossRefGoogle Scholar
  12. Carten RB (1986) Sodium-calcium metasomatism: chemical, temporal, and spatial relationships at the Yerington, Nevada, porphyry copper deposit. Econ Geol 81:1495–1519CrossRefGoogle Scholar
  13. Cebriá JM, López Rruiz J, Doblas M, Martins LT, Munhá J (2003) Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain): implications on the origin of the Central Atlantic Magmatic Province. J Petrol 44:547–568CrossRefGoogle Scholar
  14. Chabbi A, Chouabbi A, Chermiti A, Ben Youssef M, Kouadria T, Ghanmi M (2016) La mise en évidence d’une nappe de charriage en structure imbriquée : Cas de la nappe tellienne d’Ouled Driss, Souk-Ahras, Algérie. Courrier du Savoir 21:149–156Google Scholar
  15. Chabou MC, Sebai A, Féraud G, Bertrand H (2007) 40Ar/39Ar dating of the Central Atlantic magmatic province (CAMP) in southwestern Algeria. Compt Rendus Geosci 339:970–978CrossRefGoogle Scholar
  16. Chabou MC, Bertrand H, Sebaï A (2010) Geochemistry of the Central Atlantic Magmatic Province (CAMP) in south-western Algeria. J Afr Earth Sci 58:211–219CrossRefGoogle Scholar
  17. Cirrincione R, Fiannacca P, Lustrino M, Romano V, Tranchina A (2014) Late Triassic tholeiitic magmatism in Western Sicily: a possible extension of the Central Atlantic Magmatic Province (CAMP) in the Central Mediterranean area. Lithos 188:60–71CrossRefGoogle Scholar
  18. Cirrincione R, Fiannacca P, Lustrino M, Romano V, Tranchina A, Villa IM (2015) Enriched asthenosphere melting beneath the nascent north African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy). Int J Earth Sci 105:595–609CrossRefGoogle Scholar
  19. David L (1956) Etude géologique de la haute Medjerda. Bull Serv Carte Géol Algérie 11, Algérie, 304 pGoogle Scholar
  20. Davies JHFL, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596.  https://doi.org/10.1038/ncomms15596 CrossRefGoogle Scholar
  21. De Min A, Piccirillo EM, Marzoli A, Bellieni G, Renne PR, Ernesto M, Marques L (2003) The Central Atlantic Magmatic Province (CAMP) in Brazil: petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. In: Hames WE, McHome JG, Renne PR, Ruppel C (eds) The Central Atlantic Magmatic Province: insights from fragments of Pangea, vol. 136. Amer Geophys Union Geophys Monogr, pp 209–226Google Scholar
  22. Deckart K, Bertrand TH, Liégeois JP (2005) Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos 82:289–314CrossRefGoogle Scholar
  23. Demant A, Morata D (1996) Les dolérites tholéiitiques de Gaujacq et St-Pandelon (Landes, France). Pétrologie, géochimie et cadre géodynamique. Bull Soc Géol Fr 167:321–333Google Scholar
  24. Donnelly KE, Goldstein SL, Langmuir CH, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366CrossRefGoogle Scholar
  25. Dubourdieu G (1956) Etude géologique de la région de l’Ouenza (confins algéro-tunisiens). D.Sc, Paris, Pub Serv Carte Géol Algérie, Bull 10: 659 pGoogle Scholar
  26. Dupuy C, Dostal J (1984) Trace element geochemistry of some continental tholeiites. Earth Planet Sci Lett 67:61–69CrossRefGoogle Scholar
  27. El Hadi H, Tahiri A, El Maidani A, Saddiqi O, Simancas F, Lodeiro FG, Azor A, Martinez-Poyatos D, Tahiri M, De La Rosa Diaz J (2014) Geodynamic setting context of the Permian and Triassic volcanism in the northwestern Moroccan Meseta from petrographical and geochemical data. Bull Inst Sci, Rabat, Sect Sci Terre 36:55–67Google Scholar
  28. Ernst RE, Youbi N (2017) How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52CrossRefGoogle Scholar
  29. Farki K, Zahour G, El Hadi H, Alikouss S, Zerhouni Y (2014) Les tholéiites fini triasiques de Mohammedia (meseta côtière, Maroc): témoins d’un volcanisme de rift intracontinental avorté. Eur Sci J Edit 10(20):125–143Google Scholar
  30. Floyd PA, Winchester JA (1975) Magma type and tectonic setting, discrimination using immobile elements. Earth Planet Sci Lett 27:211–218CrossRefGoogle Scholar
  31. Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273CrossRefGoogle Scholar
  32. Grasso M, Scribano V (1985) Geological and petrological notes on a Triassic sill on the southern slope of Mt. Altesina (Central Sicily): a contribution to the knowledge of the Triassic magmatism in Sicily. Boll Soc Geol Ital 104:229–238Google Scholar
  33. Handy MR, Schmid SM, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling platetectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158CrossRefGoogle Scholar
  34. Hatira N, Smati A, Mansouri A, Perthuisot V, Rouvier H (2000) Le Trias à caractère extrusif de la zone des dômes: exemple de la structure de Débadib-Ben Gasseur (Tunisie septentrionale). Bull Soc Géol Fr 171(3):319–326CrossRefGoogle Scholar
  35. Hezzi I (2014) Caractérisation géophysique de la plateforme de Sahel, Tunisie nord-orientale et ses conséquences géodynamiques. Doct Thesis, Univ Rennes 1, France, 316 pGoogle Scholar
  36. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436CrossRefGoogle Scholar
  37. Hövelmann J, Putnis A, Geisler T, Schmidt BC, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observation from hydrothermal experiments. Contrib Mineral Petrol 159:43–59CrossRefGoogle Scholar
  38. Humphris SE, Thompson G (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Acta 42:127–587CrossRefGoogle Scholar
  39. Jallouli C, Chikhaoui M, Braham A, Turki MM, Mickus K, Benassi R (2005) Evidence for Triassic salt domes in the Tunisian Atlas from gravity and geological data. Tectonophysics 396:209–225CrossRefGoogle Scholar
  40. Kamoun F, Peybernès B, Ciszak R, Calzada S (2001) Triassic palaeogeography of Tunisia. Paleogeogr Palaeoclimatol Palaeoecol 172:223–242CrossRefGoogle Scholar
  41. Kurtz J (1983) Geochemistry of early Mesozoic basalts from Tunisia. J Afr Earth Sci 1(2):113–125Google Scholar
  42. Lago M, Arranz E, Galé C, Bastida C (1999) Las doleritas toleíticas triásicas del sector SE de la Cordillera Ibérica: petrología y geoquímica. Estud Geol 55:223–235Google Scholar
  43. Lago M, Galé C, Arranz E, Vaquer R, Gil A, Pocovi A (2000) Triassic tholeiitic dolerites (“ophites”) of the El Grado diapir (Pyrenees, Huesca, Spain): emplacement and composition. Estud Geol 56:3–18Google Scholar
  44. Laridhi-Ouazaa N (1994) Etude minéralogique et géochimique des épisodes magmatiques mésozoïques et miocènes de la Tunisie. Thèse Doc d’Etat, Univ Tunis II, 466 pGoogle Scholar
  45. Lemoine M (1983) Rifting and early drifting: Mesozoic Central Atlantic and Ligurian Tethys. Init Rep Deep Sea DrilI Proj 76:885–895Google Scholar
  46. Mahmoudi A, Bertrand H (2007) Identification géochimique de la province magmatique de l’Atlantique central en domaine plissé: exemple du Moyen Atlas marocain. Compt Rendus Geosci 339:545–552CrossRefGoogle Scholar
  47. Marcelot G, Dupuy C, Dostal J, Rançon JP, Pouclet A (1989) Geochemistry of mafic volcanic rocks from the Lake Kivu (Zaire and Rwanda) section of the western branch of the African Rift. J Volcanol Geotherm Res 39:73–88CrossRefGoogle Scholar
  48. Martin-Rojas I, Somma R, Delgado F, Estévez A, Iannace A, Perron V, Zamparelli V (2009) Triassic continental rifting of Pangea: direct evidence from the Alpujarride carbonates, Betic cordillera, SE Spain. J Geol Soc 166:447–458CrossRefGoogle Scholar
  49. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, DeMin A (1999) Extensive 200-millonyear-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284:616–618CrossRefGoogle Scholar
  50. Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Verati C, Nomade S, Renne PR, Youbi N, Martini R, Allenbach K, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of the Central Atlantic magmatic province and the Triassic–Jurassic boundary climatic and biotic crisis. Geology 32:973–976CrossRefGoogle Scholar
  51. Marzoli A, Jourdan F, Puffer JH, Cuppone T, Tanner LH, Weems RE, Bertrand H, Cirilli S, Bellieni G, De Min A (2011) Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern USA. Lithos 122:175–188CrossRefGoogle Scholar
  52. McHone GJ (2000) Non-plume magmatism and rifting during the opening of the Central Atlantic Ocean. Tectonophysics 316:287–296CrossRefGoogle Scholar
  53. Meddah A, Bertrand H, Elmi S (2007) La province magmatique de l’Atlantique central dans le basin des Ksour (Atlas saharien, Algérie). Compt Rendus Geosci 339:24–30CrossRefGoogle Scholar
  54. Meddah A, Bertrand H, Seddiki A, Tabeliouna M (2017) The Triassic-Liassic volcanic sequence and rift evolution in the saharan atlas basins (Algeria). Eastward vanishing of the central Atlantic magmatic province. Geol Acta 15(1):11–23Google Scholar
  55. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Amer J Sci 274:321–355CrossRefGoogle Scholar
  56. Montes-Lauar CR, Pacca IG, Melfi AJ, Piccirillo EM, Bellieni G, Petrini R, Rizzieri R (1994) The Anari and Tapirapua Jurassic formations, xestern Brazil: paleomagnetism, geochemistry and geochronology. Earth Planet Sci Lett 128:357–371CrossRefGoogle Scholar
  57. Morata D, Puga E, Demant A, Aguirre L (1997) Geochemistry and tectonic setting of the «ophites» from the external zones of the Betic cordilleras (S. Spain). Estud Geol 53:107–120CrossRefGoogle Scholar
  58. Neal CR, Taylor LA (1989) A negative Ce anomaly in a peridotite xenolith: evidence for crustal recycling into the mantle or mantle metasomatism. Geochim Cosmochim Acta 53:1035–1040CrossRefGoogle Scholar
  59. Niu YL, Collerson KD, Batiza R, Wendt JI, Regelous M (1999) Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11° 200′ N. J Geophys Res 104:7067–7087CrossRefGoogle Scholar
  60. Ouarhache D, Charrière A, Chalot-Prat F, El Wartiti M (2012) Triassic to early Liassic continental rifting chronology and process at the southwest margin of the Alpine Tethys (Middle Atlas and High Moulouya, Morocco): correlations with the Atlantic rifting, synchronous and diachronous. Bull Soc Géol Fr 183:233–249CrossRefGoogle Scholar
  61. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing, Cheshire, pp 230–249Google Scholar
  62. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti. Zr, Y. and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  63. Pegram WJ (1990) Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian tholeiites, USA. Earth Planet Sci Lett 97:316–331CrossRefGoogle Scholar
  64. Perthuisot V (1992) Les diapirs du Maghreb central et oriental: Des diapirs variés, résultats d'une évolution structurale et pétrogénétique complexe. Bull Soc Géol Fr 163(6):751–760Google Scholar
  65. Perthuisot V (1994) Structures et géométrie des diapirs maghrébins. Essai de synthèse. Mém Serv Géol Algérie 6:153–159Google Scholar
  66. Perthuisot V, Guilhaumou N, Touray JC (1978) Les inclusions fluides hypersalines et gazeuses des quartz et dolomites du Trias évaporitique Nord-Tunisian: Essai d'interprétation géodynamique. Bull Soc Géol Fr 20:145–155CrossRefGoogle Scholar
  67. Puffer JH (2003) A reactivated back-arc source for CAMP magma. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds) The Central Atlantic Magmatic Province: insights from fragments of Pangea 136. Amer Geophys Union Geophys Monogr, pp 151–162Google Scholar
  68. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  69. Sanz T, Lago M, Gil A, Galé C, Ramajo J, Ubide T, Pocoví A, Tierz P, Larrea P (2013) The Upper Triassic alkaline magmatism in the NW Iberian Chain (Spain). J Iber Geol 39(2):203–222Google Scholar
  70. Sebai A, Féraud G, Bertrand H, Hanes J (1991) 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the central Atlantic rift. Earth Planet Sci Lett 104:455–472CrossRefGoogle Scholar
  71. Snoke AW, Schamel S, Karasek RM (1988) Structural evolution of Djebel Debadib Anticline: a clue to the regional tectonic style of the Tunisian Atlas. Tectonics 7:497–516CrossRefGoogle Scholar
  72. Stampfli GM, Borel G, Cavazza W, Mosar J, Ziegler P (2001a) Palaeotectonic and palaeogeographic evolution of the western tethys and peritethyn domain (IGCP PROJECT 369). Episodes 24:222–227Google Scholar
  73. Stampfli, GM, Mosar J, Favre P, Pillevuit A, Vannay J-C (2001b) Permo-Mesozoic evolution of the western Tethys realm: the NeoTethys East-Mediterranean Basin connection. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) PeriTethyan rift/wrench basins and passive margins: Nat Mus Nat Hist Paris, Memoir 186, pp 51–108Google Scholar
  74. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London, Spec Publ 42: pp. 313–345Google Scholar
  75. Touil A, Vegas R, Hafid A, Palomino R, Rizki A, Palencia A, Ruiz VC (2008) Petrography, mineralogy and geochemistry of the Ighrem diabase dyke (Anti-Atlas, Southern Morocco). Rev Soc Geol Esp 21:25–33Google Scholar
  76. Verati C, Bertrand H, Féraud G (2005) The farthest record of the Central Atlantic Magmatic Province into West Africa craton: precise 40Ar/39Ar dating and geochemistry of Taoudenni basin intrusives (northern Mali). Earth Planet Sci Lett 235:391–407CrossRefGoogle Scholar
  77. Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Thèse Doct ès Science Naturelle. Université Pierre et Marie Curie, France. 665 pGoogle Scholar
  78. Willbold M, Stracke A (2010) Formation of enriched mantle components by recycling of upper and lower continental crust. Chem Geol 276(3):188–197CrossRefGoogle Scholar
  79. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  80. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  81. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14(1):493–571CrossRefGoogle Scholar
  82. Zouaghi T, Bédir M, Inoubli MH (2005a) Structuration profonde des dépôts de l’Albien-Maastrichtien en Tunisie central: nouvelle limite de l’archipel de Kasserine et implications géodynamiques. Compt Rendus Geosci 337:685–693CrossRefGoogle Scholar
  83. Zouaghi T, Bédir M, Inoubli MH (2005b) 2D seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas Mountains, central Tunisia. J Afr Earth Sci 43:464–486CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Halima Saadia Zanouda
    • 1
    • 2
  • Rabah Laouar
    • 1
    • 3
    Email author
  • Sihem Salmi-Laouar
    • 1
    • 2
  • Amar Sebai
    • 4
  • Chrystèle Verati
    • 5
  • Salah Bouhlel
    • 6
  • Adrian J. Boyce
    • 7
  1. 1.Département de géologie, FSTUniversité Badji Mokhtar AnnabaAnnabaAlgeria
  2. 2.Laboratoire de recherche en GéologieUniversité Badji Mokhtar AnnabaAnnabaAlgeria
  3. 3.Laboratoire de GéodynamiqueGéologie de l’Ingénieur et Planétologie, F.S.T.G.A.T.Bab EzzouarAlgeria
  4. 4.Département Génie MinierEcole Nationale PolytechniqueEl HarrachAlgeria
  5. 5.Laboratoire GéoAzurUniversité Nice-Sophia AntipolisNiceFrance
  6. 6.Mineral Resources Team, LRM2E, Geology Department, Faculty of SciencesUniversity Tunis El ManarTunisTunisia
  7. 7.Isotope Geosciences Unit, SUERCGlasgowScotland

Personalised recommendations