Advertisement

Modeling of porosity by geostatistical methods

  • Rachid KettebEmail author
  • Mabrouk Djeddi
  • Yacine Kiche
Original Paper
  • 41 Downloads

Abstract

Geostatistical reservoir modeling is an interpolation technique that allows geoscientists to generate different petroleum reservoir models by integrating well logs and 3D seismic data. The application of this method involves using seismic attributes (e.g., acoustic impedance) with log data recorded in different wells, to predict the porosity distribution over the entire reservoir in a geologically realistic model. The use of the Bayesian approach in the SGS algorithm adds the ability to control the variability of the porosity in a statistical way, by taking advantage of the porosity’s probabilities of occurrence as a function of the acoustic impedance value at each point in the reservoir.

Keywords

Seismic inversion Modeling Characterization Simulation Acoustic impedance 

Abbreviations

Zi

Measurement of a variable

Zv

True value of the variable

\( {Z}_v^{\ast } \)

Estimator

λ

Constant

γ

Variogram

h

Distance between two measurements

Var

Variance

\( \sigma {\displaystyle \begin{array}{c}2\\ {}e\end{array}} \)

Minimum variance

COV

Covariance

KDE

Kernel density estimator

PDF

Probability density function

SE

South-East

NW

North-West

f

Function

Phi

Porosity

AI

Acoustic impedance

K(s)

Kernel function

SGS

Sequential Gaussian simulation

References

  1. Buland A, Kolbjornsen O, Hauge R, Skjaeveland O, Duffaut K (2008) Bayesian lithology and fluid prediction from seismic prestack data. Geophysics 73(3):13–21CrossRefGoogle Scholar
  2. Chiles, JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty, Wiley series in probability and statistics. Wiley & Sons, 695pGoogle Scholar
  3. Daly C, Jeulin D, Lajaunie C (1989) Application of multivariate kriging to the processing of noisy images. In: Armstrong M (ed) Geostatistics, vol 2. Kluwer Academic Publishers, Dordrecht, pp 749–760CrossRefGoogle Scholar
  4. Deutsch CV, Journel AG (1992) Geostatistical software library and user’s guide. Oxford University Press. p 340Google Scholar
  5. Doyen P (1988) Porosity from seismic data: a geostastical approach. Geophysics 53(10):1263–1275CrossRefGoogle Scholar
  6. Dubrule O (2003) Geostatistics for seismic data integration in earth models. Distinguished Instructor Series, No. 6, pp 3–9Google Scholar
  7. Haas A (1993) Cahiers de géostatistique, Fascicule 3. Compte-rendu des journées de géostatistique, 25–26 Mai 1993, Fontainebleau, pp 87–99Google Scholar
  8. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metal Min Soc S Afr 52(6):119–139Google Scholar
  9. Matheron G (1971) The theory of regionalized variables and its application. pp 123–130Google Scholar
  10. Omre H (1987) Bayesian kriging: merging observations and qualified guesses in kriging. Math Geol 19:25–39CrossRefGoogle Scholar
  11. Omre H, Halvorsen B (1989) The Bayesian bridge between simple and universal kriging. Math Geol 21:767–786CrossRefGoogle Scholar
  12. Ripley BD (1981) Spatial statistics. Wiley, 252 ppGoogle Scholar
  13. Rosenblatt M (1956) Remarks on some non parametric estimates of a density function. Ann Math Stat 27:832–837CrossRefGoogle Scholar
  14. Sandjivy L (1987) The factorial kriging analysis of regionalised data—analyse krigeante des donnees de prospection geochimique. PhD dissertation, Centre de Geostatistique de FontainebleauGoogle Scholar
  15. Wand MP, Jones MC (1995) Kernel smoothing. In: CRC monographs on statistics & applied probability. Chapman & Hall, New YorkGoogle Scholar
  16. Xu W, Tran TT, Srivastava RM, Journel AG (1992) Integrating seismic data in reservoir modeling: the collocated cokriging alternative, SPE 24742Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.M’hamed Bougara UniversityBoumerdesAlgeria
  2. 2.Helioparc TechnopolePauFrance

Personalised recommendations