Radiation hazard of naturally occurring soil in FONGO TONGO-Cameroon

  • Blaise Clovis YimeleEmail author
  • Henri Paul Fouda Ekobena
  • Eric Jilbert Mekongtso Nguelem
  • Maurice Moyo Ndontchueng
  • Germain Hubert Ben-Bolie
  • Pierre Owono Ateba
Technical Note


In the present investigation, natural radioactivity in soil samples from the bauxite ore deposit in FONGO TONGO municipality of Menoua Division, Western Cameroon was assessed using gamma spectrometry. Priory analysis, the detector was calibrated for both energy and efficiency using standard sources. The investigated soil samples of NDIFONDA and APOUH were randomly collected. The observed specific activities of primordial radionuclides in soil from both study areas were comparably higher than the reference values of UNSCEAR, however varied within the exemption levels recommended in the IAEA basics safety standards. The observed average values of radium equivalent activity were 299.58 Bq/kg in NDIFONDA and 425.86 Bq/kg in APOUH. The observe value in APOUH were relatively higher than the recommended save value by ICRP while that of NDIFONDA were lower. Because majority of the houses in the study site are made of brick concrete, radiological health hazard parameters (air-absorbed dose rate (D) and total annual effective dose (ET)) were estimated to evaluate public exposure to natural radiation from soil. The observed values for D and ET were relatively higher than the recommended value of UNSCEAR (143 and 0.48 mSv/year, respectively) in both sites. In addition, the calculated values of excess lifetime cancer risk were slightly higher than the worldwide averages. Finding of this study revealed that long-term exposure to natural radiation in the study area might contribute to some health disease. Therefore, further studies need to be carried out to assess long-term exposure risk to radiation priory exploration of the mine.


Soil Radioactivity Gamma spectrometry Radiological hazard Cancer risk 


  1. Alaamer AS (2008) Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia, Turkish J. Eng Env Sci 32(2008):229–234Google Scholar
  2. Arogunjo AM, Farai IP, Fuwape A (2004) Dose rate assessment of terrestrial gamma radiation in the Delta region of Nigeria. Rad Protect Dosim 108:73–77CrossRefGoogle Scholar
  3. Aytas S, Yusan S, Aslani MA, Karali T, Turkozu DA, Gok C, Erenturk S, Gokce M, Oguz KF (2012) Natural radioactivity of riverbank sediments of the Maritza and Tundja Rivers in Turkey. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(13):2163–2172. CrossRefGoogle Scholar
  4. Burnham JU (1991) Dose limits and risks. In: Burnham JU (ed) Radiation protection. The international commission on radiological protection (ICRP) publication. The international commission on radiological protection (ICRP) publication 60, Brunswick, pp 109–128Google Scholar
  5. Carvalho FP, Madruga MJ, Reis MC, Alves JG, Oliveira JM, Gouveia JS (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46CrossRefGoogle Scholar
  6. Dragović S, Janković L, Onjia A (2006) Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiat Prot Dosim 121(3):297–302CrossRefGoogle Scholar
  7. Hiéronymus B (1973) Etude minéralogique et géochimique des formations Bauxitiques de l’Ouest Cameroun. UnivParisIVCah ORSTOM, Ser Géol, Vol V, n°1, pp.97–112Google Scholar
  8. IAEA (1996) International basic safety standards (BSS) for protection against ionising radiation and for the safety of radiation sources, safety series no. 115. ViennaGoogle Scholar
  9. IAEA-TECDOC-1401 (2004) Quantifying uncertainty in nuclear analytical measurementsGoogle Scholar
  10. Kamga MA (2012) Etude géologique des indices bauxitiques du secteur de Bangam (Ouest–Cameroun). Mémoire Master, Fac. Sci. , Université Yaoundé I, p.96Google Scholar
  11. Leumbe Leumbe O (2003) Etude pétrographique, minéralogique et géochimique d’un sol ferrallitique sur trachyte de la zone moyenne du versant sud des monts Bamboutos. Mém. DEA en sc. de la Terre, Univ Yaoundé I, 93 pagesGoogle Scholar
  12. Leumbe Leumbe O, Bitom D, Tématio P, Temgoua E, Lucas Y (2005) Etude des sols ferrallitiques à caractères andiques sur trachytes en zone de montagne humide tropicale (Monts Bambouto - Ouest Cameroun). EGS 12(4):313–326Google Scholar
  13. Mehra R, Singh S and Singh K (2009) Assessment of the average effective dose from the analysis of 226Ra, 232Th and 40K in soil samples from Punjab, India. Geochem J, Vol. 45, pp. 497 to 503, 2011Google Scholar
  14. Mohammed RS, Ahmed RS (2017) Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq. Environ Earth Sci 76:1–9. CrossRefGoogle Scholar
  15. Ndontchueng MM, Nguelem EJM, Motapon O, Njinga RL, Simo A, Guembou JCS, Yimele B (2015) Radiological hazards in soil from the bauxite deposits sites in Dschang region of Cameroon. Br J Appl Sci Technol 5(4):342–352 2015, Article no.BJAST.2015.032 ISSN: 2231–0843CrossRefGoogle Scholar
  16. Ngachin M, Garavaglia M, Giovani C, KwatoNjock MG, Nourreddine A (2008) Radioactivity level and soil radon measurement of a volcanic area in Cameroon. J Environ Radioact 99:1056–1060CrossRefGoogle Scholar
  17. Ngoufo R (1988) Les monts Banboutos : environnement utilisation de l’espace. Yaoundé : Université de Yaoundé (thèse 3ème cycle)Google Scholar
  18. Nguelem EJM, Ndontchueng MM, Motapon O (2016) Determination of 226Ra, 232Th, 40K, 235U and 238U activity concentration and public dose assessment in soil samples from bauxite core deposits in Western Cameroon. Springer Plus 5:1253. CrossRefGoogle Scholar
  19. Nguelem EJM, Ndontchueng MM, Motapon O, Guembou CJS, Darko EO (2017) Radiological monitoring and statistical approach of primordial and anthropogenic radionuclides in surface soil of Mami-water site in the Western Cameroon. Environ Earth Sci 76(17):612. CrossRefGoogle Scholar
  20. Nguimatsia DFW (2013) Contribution à l’étude géologique des formations bauxitiques de Fongo-Tongo (ouest-Cameroun). Mémoire Master, Fac Sci, Université Yaoundé I, p. 82Google Scholar
  21. Quindos LS, Fernandez PL, Soto J, Rodenas C, Gomez J (1994) Natural radioactivity in Spanish soil. Health Phy 66:194–200CrossRefGoogle Scholar
  22. Rafique M, Rahman SU, Basharat M, Aziz W, Ahmad I, Lone KA, Ahmad K, Matiullah (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J Radiat Res Appl Sci 7(1):29–35. doi:
  23. Ramasamy V, Suresh G, Meenakshisundaram V, Gajendran V (2009) Evaluation of natural radionuclide content in river sediments and excess lifetime cancer risk due to gamma radioactivity. Res J Environ Earth Sci 1:6–10Google Scholar
  24. Rani A, Mittal S, Mehra R (2015) Ramola RC (2015) assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl Radiat Isot 101:122–126CrossRefGoogle Scholar
  25. Sojien M (2007) Petrographic study, mineralogy and geochemistry of bauxite training Bangamdans of the High West Cameroon. Thèse MSc., Université de Dschang, Dschang. 2007;77Google Scholar
  26. Taskin H, Karavus M, Ay P, Topuzoglu A, Hindiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53. CrossRefGoogle Scholar
  27. Tchamba AB, Yongue R, Melo UC, Kamseu E, Njoya D, Njopwouo D (2008) Caractérisation de la bauxite de HaléoDanielle (Minim-Martap, Cameroun) en vue de son utilisation industrielle dans les matériaux à haute teneur en alumine. Sil Ind 73(5–6):77–84Google Scholar
  28. Tematio P (2005) Etude cartographique et Pétrologique des sols à caractères ferrallitiques et andosoliques dans les monts Bambouto (Ouest-Cameroun): influence de la lithologie et des facteurs du milieu sur la nature et la distribution des sols en région de montagne tropicale humide . Thèse Doct Etat, Fac Sci Univ Yaoundé I, 252pGoogle Scholar
  29. Tematio P, Kengni L, Bitom D, Hodson M, Fopoussi JC, Leumbe Leumbe O, Mpakam HG, Tsozue D (2004) Soil and their distribution on Bambouto volcanic mountain, West Cameroon highland, Central Africa. J Afr Earth Sci 39:447–457CrossRefGoogle Scholar
  30. Thabayneh KM, Jazzar M (2012) Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem Province-Palestine. OJSS 2:7–16. CrossRefGoogle Scholar
  31. UNSCEAR (2008) United Nations scientific committee on the effect of atomic radiation report to the general assembly. Annex B: exposures of the public and workers from various sources of radiationGoogle Scholar
  32. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1993) Sources and effects of ionizing radiation: a report to the general assembly with scientific annexes. Annex A, United Nations, New YorkGoogle Scholar
  33. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources and effects of ionizing radiations: a report on the effects of atomic radiation to the general assembly with scientific annexes. Annex B, United Nations, New YorkCrossRefGoogle Scholar
  34. Weecksteen G (1957) Rapport préliminaire sur le gisement de bauxite de Fongo-Tongo. Rapport multigr. Dir. des Mines et de la Géologie. Etat du CamerounGoogle Scholar
  35. Wouatong ASL, Tchungouelieu WH, Ngapgue F, Katte V, Beyala VKK (2014) Mineralogical and Geotechnical Characteristics of the Loose Weathered Trachytes of Fongo-Tongo (West-Cameroon). Int J Appl Sci Technol 4(7):85–96Google Scholar
  36. Yu KN, Guan ZJ, Stoks MJ, Young EC (1992) The assessment of natural radiation dose committed to the Hong Kong people. J Environ Radiaoact 17:31–48CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Blaise Clovis Yimele
    • 1
    • 2
    Email author
  • Henri Paul Fouda Ekobena
    • 1
  • Eric Jilbert Mekongtso Nguelem
    • 2
    • 3
  • Maurice Moyo Ndontchueng
    • 2
    • 3
  • Germain Hubert Ben-Bolie
    • 1
  • Pierre Owono Ateba
    • 1
  1. 1.Laboratory of Nuclear, Atomic, Molecular Physics and Biophysics, Department of Physics, Faculty of ScienceUniversity of Yaoundé 1YaoundéCameroon
  2. 2.National Radiation Protection Agency (NRPA)YaoundéCameroon
  3. 3.Department of Physics, Faculty of ScienceUniversity of DoualaDoualaCameroon

Personalised recommendations