Advertisement

Modeling the multiple time scale response of hydrological drought to climate change in the data-scarce inland river basin of Northwest China

  • Nina Zhu
  • Jianhua XuEmail author
  • Chong Wang
  • Zhongsheng Chen
  • Yang Luo
Original Paper
  • 131 Downloads

Abstract

It is difficult to quantitatively assess the response of hydrological drought (HD) to climate change in the inland river basins of northwest China because of the complicated geographical environment and scarce data. To address this problem, we conducted a hybrid model by integrating the ensemble empirical mode decomposition (EEMD), the long short-term memory (LSTM) model, and the statistical downscaling method and selected the Aksu River Basin (ARB) as a typical representative of data-scarce inland river basin in northwest China to simulate its hydrological drought in the period of 1980–2015 based on reanalysis climate data and hydrological observation data. The coefficient of determination (R2), the mean absolute error (MAE), the Nash–Sutcliffe efficiency coefficient (NSE), and the index of agreement d (d index) all showed high simulation accuracy of the hybrid model (R2 = 0.712, MAE = 0.304, NSE = 0.706, and d index = 0.901 of the Aksu River Basin), and the simulated effect of the hybrid model is much better than that of a single long short-term memory model. The simulated results in the Aksu River Basin by the model revealed that hydrological drought in the two subbasins (i.e. the Kumarik River Basin (KRB) and the Toshkam River Basin (TRB)) showed similar cycles on the seasonal scale, the interannual scale, and the interdecadal scale, which are mainly controlled and influenced by regional climate change. On the seasonal scale, the effect of precipitation and temperature on hydrological drought is not significant; on the interannual scale, precipitation is the key factor compared to temperature in inducing hydrological drought change; on the interdecadal scales, the correlations between precipitation, temperature, and hydrological drought were the strongest and most significant.

Keywords

Deep learning Ensemble empirical mode decomposition Hybrid model Long short-term memory model Simulation Statistical downscaling 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41871025, 41630859), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20100303), and the Open Foundation of State Key Laboratory, Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (Grant No. G2014-02-07).

References

  1. Amrit K, Pandey RP, Mishra SK (2018) Characteristics of meteorological droughts in northwestern India. Nat Hazards 94:561–582.  https://doi.org/10.1007/s11069-018-3402-0 CrossRefGoogle Scholar
  2. Anandhi A, Srinivas VV, Nanjundiah RS, Kumar N (2008) Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol 28:401–420.  https://doi.org/10.1002/joc.1529 CrossRefGoogle Scholar
  3. Ashiq M, Zhao C, Ni J, Akhtar M (2010) GIS-based high-resolution spatial interpolation of precipitation in mountain–plain areas of upper Pakistan for regional climate change impact studies. Theor Appl Climatol 99:239–253.  https://doi.org/10.1007/s00704-009-0140-y CrossRefGoogle Scholar
  4. Azmi M, Rüdiger C (2018) Validating the data fusion-based drought index across Queensland, Australia, and investigating interdependencies with remote drivers. Int J Climatol 38:4102–4115.  https://doi.org/10.1002/joc.5555 CrossRefGoogle Scholar
  5. Azmi M, Rüdiger C, Walker JP (2016) A data fusion-based drought index. Water Resour Res 52:2222–2239.  https://doi.org/10.1002/2015wr017834 CrossRefGoogle Scholar
  6. Bao HY, Yang K, Wang CH (2017) Characteristics of GLDAS soil-moisture data on the Tibet Plateau. Sci Cold Arid Reg 9:127–141.  https://doi.org/10.3724/SP.J.1226.2017.00127 CrossRefGoogle Scholar
  7. Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural networks and wavelet support vector regression models. J Hydrol 508:418–429.  https://doi.org/10.1016/j.jhydrol.2013.10.052 CrossRefGoogle Scholar
  8. Bellu A, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2016) A framework model for the dimensioning and allocation of a detention basin system: the case of a flood-prone mountainous watershed. J Hydrol 533:567–580.  https://doi.org/10.1016/j.jhydrol.2015.12.043 CrossRefGoogle Scholar
  9. Cai M, Liu J (2016) Maxout neurons for deep convolutional and LSTM neural networks in speech recognition. Speech Commun 77:53–64.  https://doi.org/10.1016/jspecom201512003 CrossRefGoogle Scholar
  10. Cetin M (2015) Determining the bioclimatic comfort in Kastamonu City. Environ Monit Assess 187:640.  https://doi.org/10.1007/s10661-015-4861-3
  11. Cetin M (2016) Determination of bioclimatic comfort areas in landscape planning: a case study of Cide coastline. Turk J Agric Food Sci Technol 4:800–804Google Scholar
  12. Cetin M, Topay M, Kaya LG, Yilmaz B (2010) Efficiency of bioclimatic comfort in landscape planning process: case of Kutahya. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri A 1:83–95Google Scholar
  13. Cetin M, Sevik H, Zeren I (2017) Coastal biocomfort mapping for Doganyurt. In: Kilinc-Ata N (ed) The effects of environmental policies on sustainability: theory and methods. OMICS, e-Books International, Foster City, pp 51–55Google Scholar
  14. Cetin M, Adiguzel F, Kaya O, Sahap A (2018a) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20:361–375.  https://doi.org/10.1007/s10668-016-9885-5 CrossRefGoogle Scholar
  15. Cetin M, Yildirim E, Canturk U, Sevik H (2018b) Investigation of bioclimatic comfort area of Elazig city centre. In: Kilinc-Ata N (ed) Recent researches in science and landscape management. Cambridge Scholars Publishing, Cambridge, pp 324–333Google Scholar
  16. Cetin M, Onac AK, Sevik H, Canturk U, Akpinar H (2018c) Chronicles and geoheritage of the ancient Roman city of Pompeiopolis: a landscape plan. Arab J Geosci 11:798.  https://doi.org/10.1007/s12517-018-4170-6 CrossRefGoogle Scholar
  17. Cetin M, Zeren I, Sevik H, Cakir C, Akpinar H (2018d) A study on the determination of the natural park’s sustainable tourism potential. Environ Monit Assess 190:167.  https://doi.org/10.1007/s10661-018-6534-5 CrossRefGoogle Scholar
  18. Chen Y, Xu C, Chen Y, Liu Y, Li W (2013) Progress challenges and prospects of eco-hydrological studies in the Tarim River basin of Xinjiang, China. Environ Manag 51:138–153.  https://doi.org/10.1007/s00267-012-9823-8 CrossRefGoogle Scholar
  19. Choubin B, Khalighi-Sigaroodi S, Malekian A, Ahmad S, Attarod P (2014) Drought forecasting in a semi-arid watershed using climate signals: a neuro-fuzzy modeling approach. J Mt Sci 11:1593–1605.  https://doi.org/10.1007/s11629-014-3020-6 CrossRefGoogle Scholar
  20. Choubin B, Malekian A, Golshan M (2016) Application of several data-driven techniques to predict a standardized precipitation index. Atmósfera 29:121–128.  https://doi.org/10.20937/atm.2016.29.02.02 CrossRefGoogle Scholar
  21. Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096.  https://doi.org/10.1016/j.scitotenv.2018.10.064 CrossRefGoogle Scholar
  22. Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25:3367–3370.  https://doi.org/10.1029/98GL52511 CrossRefGoogle Scholar
  23. Duan K, Mei Y (2014) Comparison of meteorological, hydrological and agricultural drought responses to climate change and uncertainty assessment. Water Resour Manag 28:5039–5054.  https://doi.org/10.1007/s11269-014-0789-6 CrossRefGoogle Scholar
  24. Dubrovsky M, Svoboda MD, Trnka M, Hayes MJ, Wilhite DA, Zalud Z, Hlavinka P (2009) Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor Appl Climatol 96:155–171.  https://doi.org/10.1007/s00704-008-0020-x CrossRefGoogle Scholar
  25. Duethmann D, Bolch T, Farinotti D, Kriegel D, Vorogushyn S, Merz B, Pieczonka T, Jiang T, Su B, Güntner A (2015) Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River Central Asia. Water Resour Res 51:4727–4750.  https://doi.org/10.1002/2014WR016716 CrossRefGoogle Scholar
  26. Garen DC (1993) Revised surface-water supply index for western United States. J Water Res Plan Man 119:437–454CrossRefGoogle Scholar
  27. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 18:602–610.  https://doi.org/10.1016/jneunet200506042 CrossRefGoogle Scholar
  28. Guttman NB (1991) A sensitivity analysis of the Palmer hydrologic drought index. J Am Water Resour As 27:797–807.  https://doi.org/10.1111/j1752-16881991tb01478x CrossRefGoogle Scholar
  29. Hassan Z, Shamsudin S, Harun S (2014) Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor Appl Climatol 116:243–257.  https://doi.org/10.1007/s00704-013-0951-8 CrossRefGoogle Scholar
  30. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780.  https://doi.org/10.1162/neco.1997.9.8.1735 CrossRefGoogle Scholar
  31. Hu Q, Willson GD (2000) Effects of temperature anomalies on the Palmer drought severity index in the central United States. Int J Climatol 20:1899–1911.  https://doi.org/10.1002/1097-0088(200012)20:15<1899::AID-JOC588>30CO;2-M CrossRefGoogle Scholar
  32. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc A-Math Phy 454:903–995.  https://doi.org/10.1098/rspa19980193 CrossRefGoogle Scholar
  33. Immerzeel WW, Rutten MM, Droogers P (2009) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens Environ 113:362–370.  https://doi.org/10.1016/j.rse.2008.10.004 CrossRefGoogle Scholar
  34. Jiang H, Li X, Shao H (2018) Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network. Meas Sci Technol 29:065107.  https://doi.org/10.1088/1361-6501/aab945 CrossRefGoogle Scholar
  35. Karl TR (1986) The sensitivity of the Palmer drought severity index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25:77–86.  https://doi.org/10.1175/1520-0450(1986)025<0077:TSOTPD>20CO;2 CrossRefGoogle Scholar
  36. Kaya E, Agca M, Adiguzel F, Cetin M (2018) Spatial data analysis with R programming for environment. Hum Ecol Risk Assess 1–10.  https://doi.org/10.1080/10807039.2018.1470896
  37. Kim T, Valdés JB, ASCE F (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8:319–328.  https://doi.org/10.1061/(asce)1084-0699(2003)8:6(319) CrossRefGoogle Scholar
  38. Kubiak-Wójcicka K, Bak B (2018) Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ Monit Assess 190:691.  https://doi.org/10.1007/s10661-018-7058-8 CrossRefGoogle Scholar
  39. Kuriqi A (2016) Assessment and quantification of meteorological data for implementation of weather radar in mountainous regions. MAUSAM 67:789–802Google Scholar
  40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444.  https://doi.org/10.1038/nature14539 CrossRefGoogle Scholar
  41. Leng G, Tang Q, Rayburg S (2015) Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob Planet Chang 126:23–34.  https://doi.org/10.1016/j.gloplacha.2015.01.003 CrossRefGoogle Scholar
  42. Liu Z, Xu Z, Charles SP, Fu G, Liu L (2011) Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China. Int J Climatol 31:2006–2020.  https://doi.org/10.1002/joc2211 CrossRefGoogle Scholar
  43. Liu H, Mi X, Li Y (2018) Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition singular spectrum analysis LSTM network and ELM. Energy Convers Manag 159:54–64.  https://doi.org/10.1016/jenconman201801010 CrossRefGoogle Scholar
  44. Ludwig R, Roson R (2016) Climate change water and security in the Mediterranean: introduction to the special issue. Sci Total Environ 543:847.  https://doi.org/10.1016/jscitotenv201510142 CrossRefGoogle Scholar
  45. Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198:17–21.  https://doi.org/10.1016/jecolmodel200604017 CrossRefGoogle Scholar
  46. Mishra AK, Singh VP (2012) Simulating hydrological drought properties at different spatial units in the United States based on wavelet–Bayesian regression approach. Earth Interact 16:1–23.  https://doi.org/10.1175/2012ei0004531 CrossRefGoogle Scholar
  47. Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol 26:971–985.  https://doi.org/10.1002/joc1264 CrossRefGoogle Scholar
  48. Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27:2103–2111.  https://doi.org/10.1002/joc1498 CrossRefGoogle Scholar
  49. Mukherjee S, Mishra A, Trenberth KE (2018) Climate change and drought: a perspective on drought indices. Curr Clim Chang Rep 4:145–163.  https://doi.org/10.1007/s40641-018-0098-x CrossRefGoogle Scholar
  50. Mustafa A, Rahman G (2018) Assessing the spatio-temporal variability of meteorological drought in Jordan. Earth Syst Environ 2:247–264.  https://doi.org/10.1007/s41748-018-0071-9 CrossRefGoogle Scholar
  51. Orville HD (1990) AMS statement on meteorological drought. Bull Am Meteorol Soc 71:1021–1025.  https://doi.org/10.1175/1520-0477-7171021 CrossRefGoogle Scholar
  52. Pan X, Li X, Yang K, He J, Zhang Y, Han X (2014) Comparison of downscaled precipitation data over a mountainous watershed: a case study in the Heihe River basin. J Hydrometeorol 15:1560–1574.  https://doi.org/10.1175/jhm-d-13-02021 CrossRefGoogle Scholar
  53. Rafiei-Sardooi E, Mohseni-Saravi M, Barkhori S, Azareh A, Choubin B, Jafari-Shalamzar M (2018) Drought modeling: a comparative study between time series and neuro-fuzzy approaches. Arab J Geosci 11:487.  https://doi.org/10.1007/s12517-018-3835-5 CrossRefGoogle Scholar
  54. Reddy DS, Prasad PRC (2018) Prediction of vegetation dynamics using NDVI time series data and LSTM modeling. Earth Syst Environ 4:409–419.  https://doi.org/10.1007/s40808-018-0431-3 CrossRefGoogle Scholar
  55. Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B (2018) A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ 644:954–962.  https://doi.org/10.1016/j.scitotenv.2018.07.054 CrossRefGoogle Scholar
  56. Sanches Fernandes LF, Terêncio DPS, Pacheco FAL (2015) Rainwater harvesting systems for low demanding applications. Sci Total Environ 529:91–100.  https://doi.org/10.1016/j.scitotenv.2015.05.061 CrossRefGoogle Scholar
  57. Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35:10.  https://doi.org/10.1029/2007gl032487 CrossRefGoogle Scholar
  58. Sigaroodi SK, Chen Q, Ebrahimi S, Nazari A, Choobin B (2014) Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharloo Basin in Iran. Hydrol Earth Syst Sci 18:1995–2006.  https://doi.org/10.5194/hessd-10-13333-2013 CrossRefGoogle Scholar
  59. Sordo-Ward A, Bejarano M D, Garrote L, Asenjo V, Bianucci P (2018) Drought vulnerability under climate change: a case study in La Plata Basin. Drought: Science and Policy, pp 127–145.  https://doi.org/10.1002/9781119017073.ch7 CrossRefGoogle Scholar
  60. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958Google Scholar
  61. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Pacheco FAL (2017) Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J Hydrol 550:318–330.  https://doi.org/10.1016/j.jhydrol.2017.05.003 CrossRefGoogle Scholar
  62. Terêncio DPS, Sanches Fernandes LF, Cortes RMV, Moura JP, Pacheco FAL (2018) Rainwater harvesting in catchments for agro-forestry uses: a study focused on the balance between sustainability values and storage capacity. Sci Total Environ 613-614:1079–1092.  https://doi.org/10.1016/j.scitotenv.2017.09.198 CrossRefGoogle Scholar
  63. Timilsena J, Piechota TC, Hidalgo H, Tootle G (2007) Five hundred years of hydrological drought in the upper Colorado River basin. J Am Water Resour As 43:798–812.  https://doi.org/10.1111/j.1752-1688.2007.00064.x CrossRefGoogle Scholar
  64. Van Lanen HAJ, Wanders N, Tallaksen LM, Van Loon AF (2013) Hydrological drought across the world: impact of climate and physical catchment structure. Hydrol Earth Syst Sci 17:1715–1732.  https://doi.org/10.5194/hessd-9-12145-2012 CrossRefGoogle Scholar
  65. Van Loon AF, Laaha G (2015) Hydrological drought severity explained by climate and catchment characteristics. J Hydrol 526:3–14.  https://doi.org/10.1016/jjhydrol201410059 CrossRefGoogle Scholar
  66. Vicente-Serrano SM, Lopez-Moreno J, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:44001.  https://doi.org/10.1088/1748-9326/9/4/044001 CrossRefGoogle Scholar
  67. Vrzel L, Ludwig R, Gampe D, Ogrinc N (2019) Hydrological system behaviour of an alluvial aquifer under climate change. Sci Total Environ 649:1179–1188.  https://doi.org/10.1016/jscitotenv201808396 CrossRefGoogle Scholar
  68. Wang D, Hejazi M, Cai X, Valocchi AJ (2011) Climate change impact on meteorological agricultural and hydrological drought in central Illinois. Water Resour Res 47:10.  https://doi.org/10.1029/2010wr009845 CrossRefGoogle Scholar
  69. Wang C, Xu J, Chen Y, Bai L, Chen Z (2018) A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Clim Dynam 50:2829–2844.  https://doi.org/10.1007/s00382-017-3775-x CrossRefGoogle Scholar
  70. Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. Routledge, LondonGoogle Scholar
  71. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41.  https://doi.org/10.1142/S1793536909000047 CrossRefGoogle Scholar
  72. Wu Z, Huang NE, Long SR, Peng CK (2007) On the trend detrending and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA 104:14889–14894.  https://doi.org/10.1073/pnas0701020104 CrossRefGoogle Scholar
  73. Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dynam 37:759–773.  https://doi.org/10.1007/s00382-011-1128-8 CrossRefGoogle Scholar
  74. Xu J, Chen Y, Bai L, Xu Y (2006) A hybrid model to simulate the annual runoff of the Kaidu River in northwest China. Hydrol Earth Syst Sci 20:1447–1457.  https://doi.org/10.5194/hess-2015-529 CrossRefGoogle Scholar
  75. Xu J, Chen Y, Lu F, Li W, Zhang L, Hong Y (2011) The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int J Climatol 31:687–695.  https://doi.org/10.1002/joc2110 CrossRefGoogle Scholar
  76. Xu J, Xu Y, Song C (2013) An integrative approach to understand the climatic-hydrological process: a case study of Yarkand River, northwest China. Adv Meteorol 2013:1–9.  https://doi.org/10.1155/2013/272715 CrossRefGoogle Scholar
  77. Xu J, Chen Y, Li W, Nie Q, Song C, Wei C (2014) Integrating wavelet analysis and BPANN to simulate the annual runoff with regional climate change: a case study of Yarkand River, northwest China. Water Resour Manag 28:2523–2537.  https://doi.org/10.1007/s11269-014-0625-z CrossRefGoogle Scholar
  78. Xu L, Chen N, Zhang X, Chen Z (2018a) An evaluation of statistical, NMME and hybrid models for drought prediction in China. J Hydrol 566:235–249.  https://doi.org/10.1016/j.jhydrol.2018.09.020 CrossRefGoogle Scholar
  79. Xu J, Wang C, Li W, Zuo J (2018b) Multi-temporal scale modeling on climatic-hydrological processes in data-scarce mountain basins of northwest China. Arab J Geosci 11:423.  https://doi.org/10.1007/s12517-018-3784-z CrossRefGoogle Scholar
  80. Yao J, Zhao Y, Chen Y, Yu X, Zhang R (2018) Multi-scale assessments of droughts: a case study in Xinjiang, China. Sci Total Environ 630:444–452.  https://doi.org/10.1016/jscitotenv201802200 CrossRefGoogle Scholar
  81. Yoon J, Mo K, Wood EF (2012) Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J Hydrometeorol 13:463–482.  https://doi.org/10.1175/jhm-d-11-0381 CrossRefGoogle Scholar
  82. Yuan X, Wood EF (2013) Multimodel seasonal forecasting of global drought onset. Geophys Res Lett 40:4900–4905.  https://doi.org/10.1002/grl50949 CrossRefGoogle Scholar
  83. Zhang G, Xu L, Xue Y (2017) Model and forecast stock market behavior integrating investor sentiment analysis and transaction data. Clust Comput 20:789–803.  https://doi.org/10.1007/s10586-017-0803-x CrossRefGoogle Scholar
  84. Zhang X, Zhang Q, Zhang G, Nie Z, Gui Z, Que H (2018a) A novel hybrid data-driven model for daily land surface temperature forecasting using long short-term memory neural network based on ensemble empirical mode decomposition. Int J Environ Res Public Health 15:1032.  https://doi.org/10.3390/ijerph15051032 CrossRefGoogle Scholar
  85. Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018b) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929.  https://doi.org/10.1016/jjhydrol201804065 CrossRefGoogle Scholar
  86. Zheng X, Zhu J (2015) A methodological approach for spatial downscaling of TRMM precipitation data in North China. Int J Remote Sens 36:144–169.  https://doi.org/10.1080/01431161.2014.995275 CrossRefGoogle Scholar
  87. Zhu N, Xu J, Li W, Li K, Zhou C (2018) A comprehensive approach to assess the hydrological drought of Inland River basin in northwest China. Atmosphere-Basel 9:370.  https://doi.org/10.3390/atmos9100370 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Nina Zhu
    • 1
    • 2
  • Jianhua Xu
    • 1
    • 2
    Email author
  • Chong Wang
    • 3
  • Zhongsheng Chen
    • 4
  • Yang Luo
    • 5
  1. 1.Key Laboratory of Geographic Information Science (Ministry of Education)East China Normal UniversityShanghaiChina
  2. 2.Research Center for East-West Cooperation in ChinaEast China Normal UniversityShanghaiChina
  3. 3.School of Social SciencesShanghai University of Engineering ScienceShanghaiChina
  4. 4.College of Land and ResourcesChina West Normal UniversityNanchongChina
  5. 5.Jianhu Data Technology (Shanghai) Co., LtdShanghaiChina

Personalised recommendations