Advertisement

A linear mixed effect (LME) model for soil nutrients and soil salinity changes based on two localized irrigation techniques (drip irrigation and buried diffuser)

  • Ines GasmiEmail author
  • Basem Aljoumani
  • Jose A. Sànchez-Espigares
  • Mohamed Mechergui
  • Mohamed Moussa
Original Paper

Abstract

The sustainable management of irrigation water in arid regions poses a challenge in the face of water scarcity and climate change. This study was carried out on an arid area under greenhouse conditions. A modeling approach was used to analyze the effect of two irrigation techniques (drip irrigation and a new irrigation technique called buried diffuser) on repeated measurements of soil nutrients (organic matter (OM), total nitrogen (TN), nitrate (NO3-N), ammonia (NH4+-N), available phosphorus (AP), and available potassium (AK)), sodium (Na+), and electrical conductivity (EC) at different depths of the sampling sites within the root zone of a pepper crop using two irrigation treatments: T1 (100% of reference crop evapotranspiration (ET)) and T2 (50% of reference crop evapotranspiration (ET)). As a result, the buried diffuser system significantly improves the soil nutrient levels, especially in regard to OM, TN, NO3-N, AP, and AK, with considerable enhancement of pepper yield for the two irrigation treatments, T1 and T2. Moreover, the buried diffuser keeps the field in better soil salinity conditions than drip irrigation.

Keywords

Soil nutrients Soil salinity Soil nutrients Arid area Drip irrigation Buried diffuser Linear mixed model 

Notes

Funding information

This study was financially supported by the Laboratory of Eremology and Combating Desertification, Institut des Régions Arides Medenine, Tunisia.

References

  1. Al-Ghobari HM (2012) A comparison of water application uniformity for drip irrigation system above and below soil surface at various soil depths and scheduling techniques in arid regions. WIT Trans Ecol Environ 168:311–322CrossRefGoogle Scholar
  2. Bhat R, Sujatha S, Balasimha D (2007) Impact of drip irrigation on productivity of arecanut (Areca catechu L.). Agric Water Manag 90(2007):101–111CrossRefGoogle Scholar
  3. Calvet R (2003) Le sol: propriétés et fonctions, Tome 2; phénomènes physiques et chimiques, applications agronomiques et environnementales. France Agricole/DUNOD, ParisGoogle Scholar
  4. Enciso J, Jifon J, Wieldenfeld B (2007) Subsurface drip irrigation of onions: effects of drip tape emitter spacing on yield and quality. Agric Water Manag 92(2007):126–130CrossRefGoogle Scholar
  5. Hansona BR, Schwankl LJ, Schulbach KF, Pettygrove GS (1997) A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agric Water Manag 33(2–3):139–157CrossRefGoogle Scholar
  6. Kandelous MM, Simunek J (2010) Numerical simulation of water movement in a subsurface drip irrigation system under field and laboratory conditions using Hydrus-2D. Agric Water Manag 97(2010):1070–1076CrossRefGoogle Scholar
  7. Kleigl R, Wei P, Dambacher M, Yan M, Zhou X (2011, 2011) Experimental effects and individual differences in linear mixed models: estimating the relationship between spatial, object, and attraction effects in visual attention. Front Psychol:1, article 238, 1–12Google Scholar
  8. Kumar R, Trivedi H, Yadav R, Das B, Bist AS (2016) Effect of drip irrigation on yield and water use efficiency on brinjal (Solanum melongena) CV Pant Samra. IJESRT 2016Google Scholar
  9. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974CrossRefGoogle Scholar
  10. Lebdi F (2009) Contraintes de l’agriculture irriguée aux opportunités du marché Cas de la Tunisie, IRESA, Tunisie, CIHEAM, N° 51, Septembre 2009Google Scholar
  11. Liu M, Yang J, Li X, Liu G, Yu M, Wang J (2012) Distribution and dynamics of soil water and salt under different drip irrigation regimes in Northwest China. Irrig Sci 31:675–688.  https://doi.org/10.1007/s00271-012-0343-3 (published online)CrossRefGoogle Scholar
  12. Liu SH, Kang YH, Wan SQ, Jiang SF, Liu SP, Sun JX (2013) Effect of drip irrigation on soil nutrient changes of saline-sodic soils in the songnen plain. Paddy Water Environ 11:603–610CrossRefGoogle Scholar
  13. Margat J (2004) L’eau des méditerranéens: situation et perspectives, Ministère de l’écologie et du développement durable, Agence de l’eau Rhône-Méditerranée-Corse. Plan Bleu PNUE/PAM, Sophia-Antipolis 347 pGoogle Scholar
  14. Moussa M, Chahbani B, Kouakbi M, Khatteli H, Lamourou H (2010) Comparaison de deux techniques d’irrigation la goutte à goutte et le diffuseur enterré, Revue des régions arides. Numéro spécial – 24 (2/2010) Actes du 3ème Meeting International « Aridoculture et Cultures Oasiennes : Gestion et Valorisation des Ressources et Applications Biotechnologiques dans les Agrosystèmes Arides et Sahariens » Jerba (Tunisie) 15–16-17/12/2009Google Scholar
  15. Muller T, Ranquet Bouleau C, Perona P (2016) Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds. Agric Water Manag 177(2016):54–65CrossRefGoogle Scholar
  16. Patel N, Rajput TBS (2008) Effect of subsurface drip irrigation on onion yield. Irrig Sci (2009) 27:97–108CrossRefGoogle Scholar
  17. Phene CJ, Davis KR, Hutmacher RB, Bar-Yosef B, Meek DW, Misaki J (1991) Effect of high frequency surface and subsurface drip irrigation on root distribution of sweet corn. Irrig Sci 12:135–140CrossRefGoogle Scholar
  18. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  19. Ravikumar V, Vijayakumar G, Simunek J, Chellamuthu S, santhi R, Appavu K (2011) Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model. Agric Water Manag 98(2011):1431–1440CrossRefGoogle Scholar
  20. Shrivastava PK, Parikh MM, Sawani NG, Raman S (1994) Effect of drip irrigation and mulching on tomato yield. Agric Water Manag 25(1994):179–184CrossRefGoogle Scholar
  21. Singandhupe RB, Rao GGSN, Patil NG, Brahmanand PS (2003) Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur J Agron 19(2003):327–340CrossRefGoogle Scholar
  22. Singh DK, Rajput TBS, Singh DK, Sikarwar HS, Sahoo RN, Ahmad T (2006) Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agric Water Manag 83:130–134CrossRefGoogle Scholar
  23. Thabet C, Mahé LP, Surry Y (2007) La tarification de l’eau d’irrigation en Tunisie : une analyse en équilibre générale. Économie Rurale [En ligne], 285. Janvier-février 2005, mis en ligne le 05 janvier 2007, consulté le 09 août 2016Google Scholar
  24. Tiwari KN, Singh A, Mal PK (2003) Effect of drip irrigation on yield of cabbage (Brassica oleraceca L.var. capitate) under mulch and non-mulch conditions. Agric Water Manag 58(2003):19–28CrossRefGoogle Scholar
  25. Van der Kooij S, Zwarteveen M, Boesveld H, Kuper M (2013) The efficiency of drip irrigation unpacked. Agric Water Manag 123(2013):103–110CrossRefGoogle Scholar
  26. Wan S, Kang Y (2006) Effect of drip irrigation frequency on radish (Raphanus sativus L.) growth and water use. Irrig Sci (2006) 24:161–174CrossRefGoogle Scholar
  27. Wang X, Xing Y (2016) Effects of irrigation and nitrogen fertilizer input levels on soil NO3 -N content and vertical distribution in greenhouse tomato (Lycopersicum esculentum Mill.). Scientifica, Hindawi Publishing Corporation. vol 2016, Article ID 5710915CrossRefGoogle Scholar
  28. Wang J, Gong S, Xu D, Yu Y, Zao Y (2013) Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China plain. Irrig Sci (2013) 31:1025–1037CrossRefGoogle Scholar
  29. Yuan BZ, Sun J, Nishiyama S (2004) Effect of drip irrigation on strawberry growth and yield inside a plastic greenhouse. Biosyst Eng 87(2):237–245 http://www.chahtech.com/. Accessed 17 May 2018CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Laboratory of Eremology and Combating DesertificationInstitut des Regions AridesMedenineTunisia
  2. 2.Department of Ecology, Ecohydrology and Landscape EvaluationTechnische Universität BerlinBerlinGermany
  3. 3.Department of Statistical and Operational ResearchUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  4. 4.Department of Agricultural Engineering Waters and ForestsInstitut National AgronomiqueTunisTunisia

Personalised recommendations