Advertisement

Spatio-temporal distribution of physicochemical and bacteriological parameters in the north area of Monastir bay, eastern coast of Tunisia

  • Sami ZaafraneEmail author
  • Kaouthar Maatouk
  • Fourat Akrout
  • Ismail Trabelsi
  • Neila Drira
Original Paper

Abstract

Temporal characterization of physicochemical and bacteriological parameters of the Monastir bay was conducted out on 12 stations, during six sampling periods in 2014. Results showed a seasonal variation on the physicochemical parameters of the water masses (temperature, salinity, oxygen, pH, and turbidity) and well-oxygenated waters. Results indicated the absence of mineral phosphorus and the presence of low concentration of organic phosphorus in the stations close the coastline. Mineral nitrogen represented completely by nitrate, and organic nitrogen was detected everywhere during all sampling periods without any particular distribution. Chlorophyll-a concentrations present at low ratio characterizing an oligotrophic ecosystem showed two peaks, one during spring (April, May) and second in fall (September), and were significantly correlated with temperature (R2 = 0.82). Statistical analysis of different physicochemical parameters showed a correlation between temperature pH and oxygen. ANOVA tests showed a significant difference inter-sampling periods and between stations. Bacterial flora is dominated by halotolerant germs, which showed higher concentrations in the southern part of the studied area and are inversely correlated with salinity, turbidity, oxygen, and organic nitrogen (respectively R2 = − 0.62; − 0.79; − 0.84; − 0.72). The same evolution pattern was observed in mesophilic non-halo-obligate microflora. The Vibrionaceae concentration was correlated with water temperature and was within the standards for marine waters. Fecal coliform bacteria are absent in the studied area during all sampling periods. No particularity in water quality was noticed in this ecosystem, which characterized a good state. However, one can say that the collected data on physicochemical and bacteriological evolution can provide baseline information for assisting management of the Monastir bay, which represented a typical and important model of south Mediterranean Sea.

Keywords

Marine water Physicochemical parameters Mesophilic germs Nutrients 

Notes

Funding information

This work was funded by the Ministry of Agriculture, Water Resources and Fisheries and by the Institution of Research and Agricultural Higher Education. The authors also thank the National Institute of Marine Science and Technology.

References

  1. Abdel-Halim AM, Aly-Eldeen MA (2016) Characteristics of Mediterranean Sea water in vicinity of Sidikerir region, west of Alexandria, Egypt. Egypt J Aquat Res 42(2):133–140.  https://doi.org/10.1016/j.ejar.2016.05.002 CrossRefGoogle Scholar
  2. Abidi M, Amor RB, Gueddari M (2018) Assessment of the trophic status of the South Lagoon of Tunis (Tunisia, Mediterranean Sea): geochemical and statistical approaches. J Chem 2018: 17 pp. Article ID 9859546, 17 pages.  https://doi.org/10.1155/2018/9859546
  3. Abinandan S, Shanthakumar S (2016) Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium. 3 Biotech 6(1):9.  https://doi.org/10.1007/s13205-015-0314-5 CrossRefGoogle Scholar
  4. Adloff F, Somot S, Sevault F, Jordà G, Aznar R, Déqué M, Herrmann M, Macros M, Dubois C, Padorno E, Alvarez-Fanjul E, Gomis D (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45:2775–2802.  https://doi.org/10.1007/s00382-015-2507-3 CrossRefGoogle Scholar
  5. Agence Française de Sécurité Sanitaire Environnementale (2004) Analyse statistique des niveaux de risque et des seuils de qualité microbiologique des eaux de baignade proposés par le projet de révision de la directive 76/160/CEE 114pGoogle Scholar
  6. Alvarez M, Sanleón-Bartolomé H, Tanhua T, Mintrop L, Luchetta A, Cantoni C, Schroeder K, Civitarese G (2014) The CO2 system in the Mediterranean Sea: a basin wide perspective. Ocean Science Discussions 10:1447–1504.  https://doi.org/10.5194/os-10-69-2014 CrossRefGoogle Scholar
  7. Anschutz P, Chaillou G, Lecroart P (2007) Phosphorus diagenesis in sediment of the Thau Lagoon. Estuar Coast Shelf Sci 72:447–456.  https://doi.org/10.1016/j.ecss.2006.11.012 CrossRefGoogle Scholar
  8. Ayadi N, Aloulou F, Bouzid J (2015) Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arab J Geosci 8:1755–1767.  https://doi.org/10.1007/s12517-014-1291-4 CrossRefGoogle Scholar
  9. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5(10):782–791.  https://doi.org/10.1038/nrmicro1747 CrossRefGoogle Scholar
  10. Baña Z, Ayo B, Marrasé C, Gasol JM, Iriberri J (2014) Changes in bacterial metabolism as a response to dissolved organic matter modification during protozoan grazing in coastal Cantabrian and Mediterranean waters. Environ Microbiol 16(2):498–511.  https://doi.org/10.1111/1462-2920.12274 CrossRefGoogle Scholar
  11. Bazairi H, Ben Haj S, Boero F, Cebrian D, De Juan S, Limam A, Lleonart J, Torchia G, Rais C (2010) The Mediterranean Sea biodiversity: state of the ecosystems, pressures, impacts and future priorities. Palaeogeogr Palaeoclimatol Palaeoecol 297(1):37–53CrossRefGoogle Scholar
  12. Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for the determination of nitrite in seawater. J Mar Res 1(11):87–96Google Scholar
  13. Ben Mustapha K, Afli A (2007) Quelques traits de la biodiversité marine de Tunisie. Proposition d’aires de conservation et de gestion. In: Report of the MedSudMed Expert Consultation on Marine Protected Areas and Fisheries Management. MedSudMed Technical Documents N° 3 GCP/RER/010/ITA/MSM-TD-03, 32-55Google Scholar
  14. Bertoni R, Jeffrey WH, Pujo-Pay M, Oriol L, Conan P, Joux F (2011) Influence of water mixing on the inhibitory effect of UV radiation on primary and bacterial production in Mediterranean coastal water. Aquat Sci 73(3):377–387.  https://doi.org/10.1007/s00027-011-0185-8 CrossRefGoogle Scholar
  15. Béthoux JP, Morin P, Ruiz-Pino DP (2002) Temporal trends in nutrient ratios: chemical evidence of Mediterranean ecosystem changes driven by human activity. Deep-Sea Res II Top Stud Oceanogr 49(11):2007–2016.  https://doi.org/10.1016/s0967-0645(02)00024-3 CrossRefGoogle Scholar
  16. Bosc E, Bricaud A, Antoine D (2004) Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Glob Biogeochem Cycles 18(1):1–17.  https://doi.org/10.1029/2003GB002034 CrossRefGoogle Scholar
  17. Boukef I, Mejri S, Mraouna R, Belhassan M, Harzallah A, Boudabous A, El Bour M (2010) Distribution spatiale des populations de Vibrionaceae thermotolérantes dans une lagune côtière (lagune de Bizerte : Nord-Tunisie). Marine Life 17:13–23 www.marinelife-revue.fr/IMG/pdf/boukef_et_al-2010-marlife-2 Google Scholar
  18. Cabaço S, Santos R, Duarte CM (2008) The impact of sediment burial and erosion on sea grasses: a review. Estuar Coast Shelf Sci 79:354–366.  https://doi.org/10.1016/j.ecss.2008.04.021 CrossRefGoogle Scholar
  19. Cantoni C, Cozzi S, Pecchiar I, Cabrini M, Mozetic P, Catalano G, Fonda Umani S (2003) Short-term variability of primary production and inorganic nitrogen uptake related to the environmental conditions in a shallow coastal area (Gulf of Trieste, N. Adriatic Sea). Oceanol Acta 26(5–6):565–575.  https://doi.org/10.1016/S0399-1784(03)00050-1 CrossRefGoogle Scholar
  20. Carr JA, D'Odorico P, McGlathery KJ, Wiberg PL (2016) Spatially explicit feedbacks between seagrass meadow structure, sediment and light: habitat suitability for seagrass growth. Adv Water Resour 93:315–325.  https://doi.org/10.1016/j.advwatres.2015.09.001 CrossRefGoogle Scholar
  21. Céa B, Lefèvre D, Chirurgien L, Raimbault P, Garcia N, Charrière B, Grégori G, Ghiglione JF, Barani A, Lafont M, Van Wambeke F (2015) An annual survey of bacterial production, respiration and ectoenzyme activity in coastal NW Mediterranean waters: temperature and resource controls. Environ Sci Pollut Res 22(18):13654–13668.  https://doi.org/10.1007/s11356-014-3500-9 CrossRefGoogle Scholar
  22. Clark DR, Rees AP, Joint I (2008) Ammonium regeneration and nitrification rates in the oligotrophic Atlantic Ocean: implications for new production estimates. Limnol Oceanogr 53(1):52–62.  https://doi.org/10.3410/f.1101082.557061 CrossRefGoogle Scholar
  23. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelo C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015.  https://doi.org/10.1126/science.1167755 CrossRefGoogle Scholar
  24. Danovaro R, Umani SF, Pusceddu A (2009) Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS One 4(9):e7006.  https://doi.org/10.1371/journal.pone.0007006 CrossRefGoogle Scholar
  25. De Long EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311(5760):496–503.  https://doi.org/10.1126/science.1120250 CrossRefGoogle Scholar
  26. Directive SF (2013) Guidance on monitoring of marine litter in European Seas 128 p.  https://doi.org/10.2788/99475
  27. El Bour M, Attia-El Hili H, Zaafrane S, Maatouk K, Belhasen M, Mrouana R, Ayari W (2005) Etude descriptive des populations bactériennes dans le golfe de Gabes. Anales des actes des journées des septièmes journées Tunisiennes des Sciences de la MerGoogle Scholar
  28. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council—establishing a framework for community action in the field of water policy. Brussels, Belgium 23Google Scholar
  29. Fathallah S, Halouani N, Gueddari M (2010) Évolution spatio-temporelle du trait de côte de Sousse à Monastir (Est de la Tunisie). Geo Eco Trop 34:103–112 www.geoecotrop.be/uploads/publications/pub_341_09 Google Scholar
  30. Feki-Sahnoun W (2013) Analyse de la variabilité spatio-temporelle des populations phytoplanctoniques observées dans le réseau national de surveillance du phytoplancton dans le golfe de Gabés Thèse de 3ème cycle, Université de Sfax 375p. https://hdl.handle.net/1834/5444
  31. Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Da Silva MC, Garcès E, Stiina Heiskanen A, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Clausen U (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar Coast Shelf Sci 93(2):117–131.  https://doi.org/10.1016/j.ecss.2011.03.014 CrossRefGoogle Scholar
  32. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter AR, Townsend JH, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226.  https://doi.org/10.1007/s10533-004-0370-0 CrossRefGoogle Scholar
  33. Geissler K, Manafi M, Amoros I, Alonso JL (2000) Quantitative determination of total coliforms and Escherichia coli in marine waters with chromogenic and fluorogenic media. J Appl Microbiol 88(2):280–285.  https://doi.org/10.1046/j.1365-2672.2000.00970 CrossRefGoogle Scholar
  34. Gratton Y (2002) Le krigeage: la méthode optimale d’interpolation spatiale. Les articles de l'Institut d'Analyse Géographique, 1. https://cours.etsmtl.ca/sys866/Cours/documents/krigeage_juillet2002
  35. Hendriks IE, Olsen YS, Ramajo L, Basso L, Moore TS, Howard J, Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11(2):333–346.  https://doi.org/10.5194/bg-11-333-2014 CrossRefGoogle Scholar
  36. Hermand JP (2006) Continuous acoustic monitoring of physiological and environmental processes in seagrass prairies with focus on photosynthesis. In: Caiti A, Chapman NR, Hermand JP, Jesus S (eds) Acoustic sensing techniques for the shallow water environment: inversion methods and experiments. Springer, Dordrecht, pp 183–196.  https://doi.org/10.1007/978-1-4020-4386-4_14 CrossRefGoogle Scholar
  37. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1 part2):364–376.  https://doi.org/10.4319/lo.2006.51.1_part_2.0364 CrossRefGoogle Scholar
  38. Ishizu M Richards KJ (2013) Relationship between oxygen, nitrate, and phosphate in the world ocean based on potential temperature. J Geophys Res Oceans, 118(7): 3586–3594.  https://doi.org/10.1002/jgrc.20249, 2013
  39. Jebali J, Ben-Khedher S, Ghedira J, Kamel N, Boussetta H (2011) Integrated assessment of biochemical responses in Mediterranean crab (Carcinus maenas) collected from Monastir Bay, Tunisia. J Environ Sci 23(10):1714–1720.  https://doi.org/10.1016/S1001-0742(10)60617-1 CrossRefGoogle Scholar
  40. Jiang X, Dang H, Jiao N (2015) Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PLoS One 10(2):e0117473.  https://doi.org/10.1371/journal.pone.0117473 CrossRefGoogle Scholar
  41. Jouini Z, Ben Charrada R, Moussa M (2005) Caractéristiques du Lac Sud de Tunis après sa restauration. Marine Life 15:3–11 www.marinelife-revue.fr/IMG/pdf/Jouini_et_al-2005-MarLife Google Scholar
  42. Katlane R, Dupouy C, Zargouni F (2012) Chlorophyll and turbidity concentrations deduced from MODIS as an index of water quality of the Gulf of Gabes in 2009. Revue Télédétection 11:263–271.  https://doi.org/10.1007/s12517-011-0438-9 CrossRefGoogle Scholar
  43. Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83(4):414–424.  https://doi.org/10.1016/j.ecss.2009.04.019 CrossRefGoogle Scholar
  44. Koroleff F (1969) Direct determination of ammonia in natural water as indophenol-blue ICES, C.M. 100: 9Google Scholar
  45. Kuypers MMM, Lavik G, Wobeken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci 102(18):6478–6483.  https://doi.org/10.1073/pnas.0502088102 CrossRefGoogle Scholar
  46. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346.  https://doi.org/10.4319/lo.1967.12.2.0343 CrossRefGoogle Scholar
  47. Lucea A, Duarte CM, Agusti S, Søndergaard M (2003) Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean. J Sea Res 49(3):157–170.  https://doi.org/10.1016/S1385-1101(03)00005-4 CrossRefGoogle Scholar
  48. Lyngsgaard MM, Markager S, Richardson K, Møller EF, Jakobsen HH (2017) How well does chlorophyll explain the seasonal variation in phytoplankton activity? Estuar Coasts 40(5):1263–1275.  https://doi.org/10.1007/s12237-017-0215-4 CrossRefGoogle Scholar
  49. Martinez-Urtaza J, Lozano-Leon A, Varela-Pet J, Trinanes J, Pazos Y, Garcia-Martin O (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Appl Environ Microbiol 74(1):265–274.  https://doi.org/10.1038/ismej.2011.156 CrossRefGoogle Scholar
  50. Menzel DW, Corwin N (1965) The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol Oceanogr 10(2):280–282.  https://doi.org/10.4319/lo.1965.10.2.0280 CrossRefGoogle Scholar
  51. Micheli F, Levin N, Giakoumi S, Katsanevakis S, Abdulla A, Coll M, Fraschetti S, Kark S, Koutsoubas D, Mackelworth P, Maiorano L, Possingham HP (2013) Setting priorities for regional conservation planning in the Mediterranean Sea. PLoS One 8(4):e59038–e59038.  https://doi.org/10.1371/journal.pone.0059038 CrossRefGoogle Scholar
  52. Moon JY, Lee K, Tanhua T, Kress N, Kim IN (2016) Temporal nutrient dynamics in the Mediterranean Sea in response to anthropogenic inputs. Geophys Res Lett 43(10):5243–5251.  https://doi.org/10.1002/2016GL068788 CrossRefGoogle Scholar
  53. Moschonas G, Gowen RJ, Paterson RF, Mitchell E, Stewart BM, McNeill S, Gilbert PM, Davidson K (2017) Nitrogen dynamics and phytoplankton community structure: the role of organic nutrients. Biogeochemistry 134(1–2):125–145.  https://doi.org/10.1007/s10533-017-0351-8 CrossRefGoogle Scholar
  54. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36.  https://doi.org/10.1016/S0003-2670(00)88444-5 CrossRefGoogle Scholar
  55. Pagès JF, Pérez M, Romero J (2010) Sensitivity of the seagrass Cymodocea nodosa to hypersaline conditions: a microcosm approach. J Exp Mar Biol Ecol 386(1–2):34–38.  https://doi.org/10.1016/j.jembe.2010.02.017 CrossRefGoogle Scholar
  56. Powley HR, Dürr HH, Lima AT, Krom MD, Van Cappellen P (2016) Direct discharges of domestic wastewater are a major source of phosphorus and nitrogen to the Mediterranean Sea. Environ Sci Technol 50(16):8722–8730.  https://doi.org/10.1021/acs.est.6b01742 CrossRefGoogle Scholar
  57. Pujo-Pay M, Raimbault P (1994) Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. Marine Ecology-Progress Series 105:203–203.  https://doi.org/10.3354/meps105203 CrossRefGoogle Scholar
  58. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione JF, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences. 8(4):883–899.  https://doi.org/10.5194/bg-8-883-2011 CrossRefGoogle Scholar
  59. Raimbault P, Slawyk G (1991) A semiautomatic, wet-oxidation method for the determination of particulate organic nitrogen collected on filters. Limnol Oceanogr 36(2):405–408.  https://doi.org/10.4319/lo.1991.36.2.0405 CrossRefGoogle Scholar
  60. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2:103.  https://doi.org/10.3389/fpubh.2014.00103 CrossRefGoogle Scholar
  61. Raveh O, David N, Rilov G, Rahav E (2015) The temporal dynamics of coastal phytoplankton and bacterioplankton in the eastern Mediterranean Sea. PLoS One 10(10):e0140690–e0140690.  https://doi.org/10.1371/journal.pone.0140690 CrossRefGoogle Scholar
  62. Reinthaler T, Sintes E, Herndl GJ (2008) Dissolved organic matter and bacterial production and respiration in the sea-surface microlayer of the open Atlantic and the western Mediterranean Sea. Limnol Oceanogr 53(1):122–136.  https://doi.org/10.4319/lo.2008.53.1.0122 CrossRefGoogle Scholar
  63. Reum JC, Alin SR, Feely RA, Newton J, Warner M, Mc-Elhany P (2014) Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. PLoS One 9(2):e89619.  https://doi.org/10.1371/journal.pone.0089619 CrossRefGoogle Scholar
  64. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496.  https://doi.org/10.1175/2007JCLI1824.1 CrossRefGoogle Scholar
  65. Sallami R (2015) La baie de Monastir face à la pollution de la frange littorale : l’éveil d’une conscience environnementale locale ? In G. Beltrando, S. Dahech, A. Daoud, and L. Etienne, Vulnérabilité des littoraux méditerranéens face aux changements environnementaux contemporains, Actes du symposium international- Kerkennah (Sfax) Tunisie 20-24 octobre 2015 (pp.275-281)Google Scholar
  66. Seitzinger SP, Harrison JA, Dumont E, Beusen AH, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19:GB4S01–GB4S01.  https://doi.org/10.1029/2005GB002606 CrossRefGoogle Scholar
  67. Shi X, Qi M, Tang H, Han X (2015) Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms. Estuar Coast Shelf Sci 163:36–43.  https://doi.org/10.1016/j.ecss.2015.02.007 CrossRefGoogle Scholar
  68. Smith TM, Reynolds RW (2002) Bias corrections for historical sea surface temperatures based on marine air temperatures. J Clim 15(1):73–87.  https://doi.org/10.1175/1520-0442(2002)015<0073:BCFHSS>2.0.CO2 CrossRefGoogle Scholar
  69. Smyth K, Elliott M (2016) Effects of changing salinity on the ecology of the marine environment. Stressors in the marine environment. Oxford University Press, Oxford: 161–174.  https://doi.org/10.1093/acprof:oso/9780198718826.003.0009
  70. Souissi R, Turki I, Souissi F (2014) Effect of submarine morphology on environment quality: case of Monastir bay (eastern Tunisia). Carpathian Journal of Earth and Environmental Sciences 9(3):231–239 https://www.researchgate.net/.../262560732 Google Scholar
  71. Takemura AF, Chien DM, Polz MF (2014) Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front Microbiol 5:38.  https://doi.org/10.3389/fmicb.2014.00038 CrossRefGoogle Scholar
  72. Valenti D, Denaro G, Ferreri R, Genovese S, Aronica S, Mazzola S, Bonanno A, Basilone G, Spagnolo B (2017) Spatio-temporal dynamics of a planktonic system and chlorophyll distribution in a 2D spatial domain: matching model and data. Sci Rep 7(1):1–13.  https://doi.org/10.1038/s41598-017-00112-z CrossRefGoogle Scholar
  73. Wood ED, Armstrong FAJ, Richards FA (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J Mar Biol Assoc U K 47(1):23–31.  https://doi.org/10.1017/S002531540003352X CrossRefGoogle Scholar
  74. Yao M, Elling FJ, Jones C, Nomosatryo S, Long CP, Crowe SA, AntoniewiczMR HK-U, Maresca JA (2016) Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environ Microbiol 18(2):656–667.  https://doi.org/10.1111/1462-2920.13063 CrossRefGoogle Scholar
  75. Yogev T, Rahav E, Bar-Zeev E, Man-Aharonovich D, Stambler N, Kress N, Béjà O, Mulholland MR, Herut B, Berman-Frank I (2011) Is dinitrogen fixation significant in the Levantine Basin, east Mediterranean Sea? Environ Microbiol 13(4):854–871.  https://doi.org/10.1111/j.1462-2920.2010.02402.x CrossRefGoogle Scholar
  76. Zaafrane S, Maatouk K (2012) Role of the rpoS gene in the survival of Salmonella enterica serovar Typhimurium in the marine environment. Water Quality Research Journal 47(2):186–196.  https://doi.org/10.2166/wqrjc.2012.034 CrossRefGoogle Scholar
  77. Zappalà G, Caruso G, Crisafi E (2004) Coastal pollution monitoring by an automatic multisampler coupled with a fluorescent antibody assay. Environ Stud 10:125–133.  https://doi.org/10.2495/CENV040121 CrossRefGoogle Scholar
  78. Zaoualli J, Ben Chrarada R (2010) Impacts des actions anthropiques sur le phytobenthos de la baie de Monastir. In Proceedings of the fourth Mediterranean Symposium on Marine Vegetation. RAC/SPA. Tunis. pp135–140Google Scholar
  79. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225.  https://doi.org/10.1146/annurev-marine-120709-142819 CrossRefGoogle Scholar
  80. Zoccarato L, Fonda Umani S (2015) Major constrains of the pelagic food web efficiency in the Mediterranean Sea. Biogeosci Discuss 6:4365–4403.  https://doi.org/10.5194/bgd-12-4365-2015 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Sami Zaafrane
    • 1
    Email author
  • Kaouthar Maatouk
    • 1
  • Fourat Akrout
    • 2
  • Ismail Trabelsi
    • 3
  • Neila Drira
    • 4
  1. 1.Institut National des Sciences et de Technologies de la MerMonastirTunisia
  2. 2.Institut National des Sciences et de Technologies de la Mer centre de la Goulette Port de pêche la GouletteLa GouletteTunisia
  3. 3.Centre de Recherche et des Technologies des Eaux Technopole de Borj-Cédria - Route touristique de SolimanSolimanTunisia
  4. 4.Faculté des Sciences Techniques de Monastir Avenue de l”EnvironnementMonastirTunisia

Personalised recommendations