Advertisement

Urban growth modeling of a rapidly urbanizing area using FMCCA model

  • Sasanka GhoshEmail author
  • Arijit Das
Original Paper
  • 18 Downloads

Abstract

Rapid urbanization is a serious concern for most of the developing countries as well as for India. Rapid and dynamic urbanization requires continuous monitoring of the underlying process of urbanization. But some loopholes of the Census of India data restrict continuous monitoring of rapid urbanization as the Census of India is the only source of urbanization-related numerical data in India. Past land use pattern of the study area shows a rapid growth of urban areas from 38.70 km2 in 2009 to 54.92 km2 in 2017 at the expense of agricultural land, vegetation, and also wetland areas. Markov chain-derived transition matrix-based cellular automata modeling is used to predict the land use pattern for 2017 on the basis of past two land use for a rapidly urbanizing phase integrating fuzzy standardization and weighted linear combination based potential urban development surface. Predicted land use map is used to compare with the actual land use map of 2017 extracted from satellite image for assessing the applicability of this model for future land use change prediction. Validation result shows a 94.24% (in terms of areal extension) agreement between actual and predicted urban area map of 2017. Then, the final urban growth map for 2020 is predicted using 2014 and 2017 land use maps and the same urban development potential area map used for predicting the 2017 urban area map. The predicted map shows a rapid urbanization in the adjacent areas of Salt Lake City especially towards the Northern and Eastern direction of the Salt Lake area, which increases the conciseness of the urban planners.

Keywords

Land use change Fuzzy suitability Markov chain cellular automata Rapid urbanization Future urban growth 

References

  1. Allen J and Lu K (2003) “Modeling and prediction of future urban growth in the Charleston region of South Carolina: a GIS-based integrated approach.” Conservation Ecology,8(2). http://www.consecol.org/vol8/iss2/art2/.
  2. Al-Shalabi M et al (2012) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sanaâ™ a Metropolitan City, Yemen. Environ Earth Sci 70(1):425–437.  https://doi.org/10.1007/s12665-012-2137-6 CrossRefGoogle Scholar
  3. Araya YH, Cabral P (2010) Analysis and modelling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2:1549e1563CrossRefGoogle Scholar
  4. Batty M and Xie Y (1994) From cells to cities. Environment and planning B: Planning and design 21(7):S31–S48Google Scholar
  5. Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. MIT Press, CambridgeGoogle Scholar
  6. Couclelis H (1988) Of mice and men: what rodent populations can teach us about complex spatial dynamics. Environment and Planning A 20(1):99–109Google Scholar
  7. Couclelis H (1985) Cellular worlds: a framework for modeling micro—macro dynamics. Environ Plan A 17(5):585–596.  https://doi.org/10.1068/a170585 CrossRefGoogle Scholar
  8. Eastman JR (2009) IDRISI 16: The Andes edition. Worcester, MA: Clark University.Google Scholar
  9. Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modelling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761e3772CrossRefGoogle Scholar
  10. Ghosh S, Das A (2017) Exploring the lateral expansion dynamics of four metropolitan cities of India using DMSP/OLS night time image. Spatial Information Research.  https://doi.org/10.1007/s41324-017-0141-3
  11. Ghosh S, Das A (2018) Modelling urban Cooling Island impact of green space and water bodies on surface urban Heat Island in a continuously developing urban area. Model Earth Syst Environ 4:501–515.  https://doi.org/10.1007/s40808-018-0456-7 CrossRefGoogle Scholar
  12. Han J, Hayashi Y, Cao X, Imura H (2009) Application of an integrated system dynamics and cellular automata model for urban growth assessment: a case study of Shanghai, China. Landsc Urban Plan 91:133–141CrossRefGoogle Scholar
  13. He J, Liu Y, Yu Y, Tang W, Xiang W, Liu D (2013) A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Appl Geogr 37:127e138CrossRefGoogle Scholar
  14. Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth : measurement , analysis and modeling. Remote Sens Environ 86(3):286–302.  https://doi.org/10.1016/S0034-4257(03)00075-0 CrossRefGoogle Scholar
  15. Hillier B and Hanson J (1984) The social logic of space. Cambridge University Press, CambridgeGoogle Scholar
  16. Hu Z, Lo C (2007) Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban Syst 31:667e688CrossRefGoogle Scholar
  17. Jat MK et al (2017) Urban growth assessment and prediction using RS, GIS and SLEUTH model for a heterogeneous urban fringe. Egypt J Remote Sens Space Sci 20:223–241.  https://doi.org/10.1016/j.ejrs.2017.02.002. CrossRefGoogle Scholar
  18. Jokar Arsanjani J, Helbich M, Kainz W, Darvishi A (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion - the case of Tehran. Int J Appl Earth Obs Geoinf 21:265e275CrossRefGoogle Scholar
  19. Liu Y (2009) Modeling urban development with geographical information systems and cellular automata. CRC Press, Boca RatonGoogle Scholar
  20. López E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe. Landsc Urban Plan 55(4):271–285.  https://doi.org/10.1016/s0169-2046(01)00160-8 CrossRefGoogle Scholar
  21. Maithani, S. 2010. “Cellular automata based model of urban spatial growth.” Journals of Indian Society and Remote Sensing, 38(4): 604–610. doi:  https://doi.org/10.1007/512527-010-0053-3
  22. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New YorkGoogle Scholar
  23. Mesev TV, Longley PA, Batty M, Xie Y (1995) Morphology from imagery: detecting and measuring the density of urban land use. Environ Plan 27:759–780CrossRefGoogle Scholar
  24. Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99(2):141–153.  https://doi.org/10.1016/j.landurbplan.2010.10.001 CrossRefGoogle Scholar
  25. Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149.  https://doi.org/10.1016/j.apgeog.2013.01.009 CrossRefGoogle Scholar
  26. Mondal B et al (2016) Integrating cellular automata and Markov techniques to generate urban development potential surface: a study on Kolkata agglomeration. Geocarto International 32(4):401–419.  https://doi.org/10.1080/10106049.2016.1155656 CrossRefGoogle Scholar
  27. Osman T et al (Sept. 2016) Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on land use in the Giza Governorate, Greater Cairo Metropolitan region. Int J Urban Sci 20(3):407–426.  https://doi.org/10.1080/12265934.2016.1216327 CrossRefGoogle Scholar
  28. Rafiee R et al (2009) Simulating urban growth in Mashad City, Iran through the SLEUTH Model (UGM). Cities 26(1):19–26.  https://doi.org/10.1016/j.cities.2008.11.005 CrossRefGoogle Scholar
  29. Ramachandra TV, Aithal BH, Sowmyashree MV (2014) Urban structure in Kolkata: metrics and modelling through geo-informatics. Applied Geomatics 6(4):229–244.  https://doi.org/10.1007/s12518-014-0135-y CrossRefGoogle Scholar
  30. Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math Comput Model 54:938–943.  https://doi.org/10.1016/j.mcm.2010.11.019 CrossRefGoogle Scholar
  31. Silva Ea, Clarke Kc (2002) Calibration of the SLEUTH Urban Growth Model for Lisbon and Porto, Portugal. Comput Environ Urban Syst 26(6):525–552.  https://doi.org/10.1016/s0198-9715(01)00014-x CrossRefGoogle Scholar
  32. United Nations (2012) World urbanization prospects. The 2011 Revision. New YorkGoogle Scholar
  33. Yang X, Lo CP (2003) Modelling urban growth and landscape changes in the Atlanta metropolitan area. Int J Geogr Inf Sci 17(5):463–488.  https://doi.org/10.1080/1365881031000086965 CrossRefGoogle Scholar
  34. Zhang H et al (2016) Mapping urban impervious surface with dual-Polarimetric SAR data: an improved method. Landsc Urban Plan 151:55–63.  https://doi.org/10.1016/j.landurbplan.2016.03.009 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Department of GeographyUniversity of Gour BangaMaldaIndia

Personalised recommendations