Use of Landsat-8 OLI data for delineating fracture systems in subsoil regions: implications for groundwater prospection in the Waddai area, eastern Chad

  • Mahamat Ouchar Al-DjazouliEmail author
  • Karim Elmorabiti
  • Basem Zoheir
  • Abdelmejid Rahimi
  • Omayma Amellah
Part of the following topical collections:
  1. Current Advances in Geology of North Africa


The use of satellite images for mapping and analyzing linear structures and fracture systems in subsoil regions is essential to understand the subsurface groundwater path ways and traps. In this study, we apply Optimal Index Factor (OIF), principal component analysis (PCA), and directional filtering (Sobel) of several Landsat 8 bands for the wooded Waddai area in NE Chad. The application of the Sobel directional filter to these bands showed a robust performance for enhancing the discontinuity features and allowed better identification of the fault/fracture systems by the automated lineament extraction techniques. The results indicate that the ENE and WSW structural trends control the distribution and migration of groundwater, in good agreement with previous hydrological studies and published hydrogeological maps. New highly potential areas for groundwater exploration are identified on a lineament density map and verified by ground truth urban distribution.


Landsat 8 OLI SRTM Directional filtering Fracture system mapping Groundwater prospection Waddai area Eastern Chad 



We acknowledge the support we received from colleagues in the Geology and Oceanology Laboratory, Faculty of Science Tetouan, Abdelmalek Essaadi University. The authors would like to thank Dr. Waleed Lagrab (Abdelmalek Essaadi University) for the technical assistance and guidance. Basem Zoheir likes to acknowledge the help offerred by Bill Hauer (NASA) to obtain the staellite data. Tow anonymous reviewers are thanked for their constructive comments that helped in imporving this first draft of this manuscript.


  1. Abdeen MM, Sadek MF, Greiling RO (2007) Geological and structural setting of Wadi Hodein Area South Eastern Egypt with application of remote sensing. In: 28th Asian Conference on Remote Sensing 2007. ACRS 2007Google Scholar
  2. Abdullah A, Akhir JM, Abdullah I (2010) Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran–Sungi Lembing area, Malaysia. Electron J Geotech Eng 15:949–957Google Scholar
  3. Ahmadirouhani R, Rahimi B, Karimpour MH, Malekzadeh Shafaroudi A, Afshar Najafi S, Pour AB (2017) Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: a case study from the Bajestan area, Lut block, east of Iran. J Afr Earth Sci 134:600–612. CrossRefGoogle Scholar
  4. Ait El Mekki O, Laftouhi N-E (2016) Combination of a geographical information system and remote sensing data to map groundwater recharge potential in arid to semi-arid areas: the Haouz plain, Morocco. Earth Sci Inf 9:465–479. CrossRefGoogle Scholar
  5. Al-Dossary S, Marfurt KJ (2007) Lineament-preserving filtering. GEOPHYSICS 72:P1–P8. CrossRefGoogle Scholar
  6. Alhirmizy S (2015) Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEM) in Kirkuk Northeast Iraq. Int J Sci Res 4:1–6Google Scholar
  7. Al-Rawabdeh A, He F, Moussa A et al (2016) Using an unmanned aerial vehicle-based digital imaging system to derive a 3D point cloud for landslide scarp recognition. Remote Sens 8:2–32. CrossRefGoogle Scholar
  8. Amri K, Mahdjoub Y, Guergour L (2011) Use of Landsat 7 ETM+ for lithological and structural mapping of Wadi Afara Heouine area (Tahifet–central Hoggar, Algeria). Arab J Geosci 4:1273–1287. CrossRefGoogle Scholar
  9. Mbark Aouragh, Bernard Lacaze, Micheline Hotyat , Rachid Ragala AEA (2012) Mapping and monitoring the density of argan trees (south-West Morocco) using high spatial resolution remote sensing images. El JadidaGoogle Scholar
  10. Bessoles A, Trompette R (1980) Geology of Africa. The Panafrican Channel “Mobile Zone of Central Africa (Southern Part) and Sudanese Mobile Zone”. Géologie de l’Afrique. La Chaîne Panafricaine «zone Mobile de l’Afrique Centrale (Partie Sud) et Zone Mobile Soudanaise»Google Scholar
  11. Bonn, Rochon (1992) Accurate remote sensing. Volume 1: Principles and Methods. Presses of the University of Quebec / AUPELF, Sainte-Foy, Canada, 485p. Précis de télédétection. Volume 1 : Principes et Méthodes. Presses de l’université du Québec/AUPELF, Sainte-Foy, Canada, 485p, Presses deGoogle Scholar
  12. Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari R, Angeli MG, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82. CrossRefGoogle Scholar
  13. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8:679–698. CrossRefGoogle Scholar
  14. Cefigre (1990) Synthesis of knowledge on the hydrogeology of West Africa. Crystalline and crystallophyllous base. Old sedimentary. Water Master’s Collection, ParisGoogle Scholar
  15. Chaabouni R, Bouaziz S, Peresson H, Wolfgang J (2012) Lineament analysis of south Jenein area (southern Tunisia) using remote sensing data and geographic information system. Egypt J Remote Sens Space Sci 15:197–206. CrossRefGoogle Scholar
  16. Chavez PS Jr, Berlin GL, Sowers LB (1982) Statistical method for selecting Landsat MSS ratios. J Appl Photogr Eng 8:23–30Google Scholar
  17. Das S, Pardeshi SD, Kulkarni PP, Doke A (2018) Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arab J Geosci 11:160. CrossRefGoogle Scholar
  18. Engalenc M, Grillot JC (1981) Method of study and research of groundwater crystalline rocks of West Africa. Geo Hydraulic -LCHF (ed) FranceGoogle Scholar
  19. Fairhead JD (1988) Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: the role of the west and central African rift system. Tectonophysics 155:181–191. CrossRefGoogle Scholar
  20. Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK (1998) Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process 7:1684–1699. CrossRefGoogle Scholar
  21. Hobbs WH (1904) Lineaments of the Atlantic border region. Geol Soc Am Bull 15:483–506. CrossRefGoogle Scholar
  22. Hobbs W (1912) Earth features and their meaning: an introduction to geology for the student and the general readerGoogle Scholar
  23. Irons JR, Dwyer JL, Barsi JA (2012) The next Landsat satellite: the Landsat data continuity Mission. Remote Sens Environ 122:11–21. CrossRefGoogle Scholar
  24. Mahan A, Arfania R (2018) Exploring porphyry copper deposits in the central Iran using remote sensing techniques. Open J Geol 08:606–622. CrossRefGoogle Scholar
  25. Mallast U, Gloaguen R, Geyer S, Rödiger T, Siebert C (2011) Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrol Earth Syst Sci 15:2665–2678. CrossRefGoogle Scholar
  26. Marghany M, Hashim M (2010) International journal of physical sciences. Academic JournalsGoogle Scholar
  27. Masoud AA, Koike K (2011) Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS J Photogramm Remote Sens 66:818–832. CrossRefGoogle Scholar
  28. Mohammadizad R, Arfania R (2017) Advanced investigation of remote sensing to geological mapping of Zefreh region in Central Iran. Open J Geol 07:1509–1529. CrossRefGoogle Scholar
  29. Moussie (1986) West Africa and Central Africa Groundwater Resources Potential Map at 1: 5 000 000, Report 86 AFO 178 WATER, Orleans, FranceGoogle Scholar
  30. Ngatcha BN, Mudry J, Leduc C (2008) The state of understanding on groundwater recharge for the sustainable management of transboundary aquifer in the Lake Chad basin. Thessaloniki, GreeceGoogle Scholar
  31. O’leary DW, Friedman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new standards for old terms. Geol Soc Am Bull 87:1463.<1463:LLLSPN>2.0.CO;2 CrossRefGoogle Scholar
  32. Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J Hydrol 525:197–208. CrossRefGoogle Scholar
  33. PCI Geomatica (2001) PCI Geomatica user’s guide version 9.1. Ontario. Canada: Richmond HillGoogle Scholar
  34. Plotte H (1970) Hydrogeology of Waddai Waddai Quadrennial Water Management Program.”Hydrogéologie de Waddai Programme quadriennal d’aménagement hydraulique de Waddai”. Orléans, FranceGoogle Scholar
  35. Pour AB (2014) Exploration of gold mineralization in a tropical region using earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia. Arab J Geosci 7:2393–2406. CrossRefGoogle Scholar
  36. Pour AB, Hashim M (2015) Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, South-Eastern Islamic Republic of Iran. J Taibah Univ Sci 9:155–166. CrossRefGoogle Scholar
  37. Pournamdari, M. (2014) Lithological mapping of ophiolite complex with emphasis on chromite and magnesite exploration using remote sensing techniques. Universiti Teknologi Malaysia, 210 pGoogle Scholar
  38. Raj NJ, Prabhakaran A, Muthukrishnan A (2017) Extraction and analysis of geological lineaments of Kolli hills, Tamil Nadu: a study using remote sensing and GIS. Arab J Geosci 10:195. CrossRefGoogle Scholar
  39. Ramadan TM, Abdel Fattah MF (2010) Characterization of gold mineral- ization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing. Egypt J Remote Sens Space Sci 13:153–163Google Scholar
  40. Ramli MF, Yusof N, Yusoff MK, Juahir H, Shafri HZM (2010) Lineament mapping and its application in landslide hazard assessment: a review. Bull Eng Geol Environ 69:215–233. CrossRefGoogle Scholar
  41. Research EI of G and M (1964) The main geological and lithological results of the Delimitation mission Waddai-DarfurGoogle Scholar
  42. Saadi NM, Zaher MA, El-Baz F, Watanabe K (2011) Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya. Int J Appl Earth Obs Geoinf 13:778–791. CrossRefGoogle Scholar
  43. Sabins FF (1997) Remote sensing : principles and interpretation / Floyd F. Sabins, Jr - details - trove, 2nd edn. freeman, New YorkGoogle Scholar
  44. Safari HO, Pirasteh S, Pradhan B, Gharibvand LK (2010) Use of remote sensing data and GIS tools for seismic hazard assessment for shallow oilfields and its impact on the settlements at Masjed-i-Soleiman area, Zagros Mountains, Iran. Remote Sens 2:1364–1377. CrossRefGoogle Scholar
  45. Salvi S, Stramondo S, Funning GJ, Ferretti A, Sarti F, Mouratidis A (2012) The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle. Remote Sens Environ 120:164–174. CrossRefGoogle Scholar
  46. Scheiber T, Fredin O, Viola G, Jarna A, Gasser D, Łapińska-Viola R (2015) Manual extraction of bedrock lineaments from high-resolution LiDAR data: methodological bias and human perception. GFF 137:362–372. CrossRefGoogle Scholar
  47. Sedrette S, Rebaï N (2016) Automatic extraction of lineaments from Landsat Etm+ images and their structural interpretation: case study in Nefza region (north west of Tunisia). J Res Environ Earth Sci 04:139–145Google Scholar
  48. Siart C, Bubenzer O, Eitel B (2009) Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: a multi-component case study on Mediterranean karst in Central Crete. Geomorphology 112:106–121. CrossRefGoogle Scholar
  49. Solomon S, Ghebreab W (2006) Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J Afr Earth Sci 46:371–378. CrossRefGoogle Scholar
  50. Storey J, Roy DP, Masek J, Gascon F, Dwyer J, Choate M (2016) A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery. Remote Sens Environ 186:121–122. CrossRefGoogle Scholar
  51. Takorabt M, Toubal AC, Haddoum H, Zerrouk S (2018) Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arab J Geosci 11:76. CrossRefGoogle Scholar
  52. Vasuki Y, Holden EJ, Kovesi P, Micklethwaite S (2014) Semi-automatic mapping of geological structures using UAV-based photogrammetric data: an image analysis approach. Comput Geosci 69:22–32. CrossRefGoogle Scholar
  53. Vaz DA, Di Achille G, Barata MT, Alves EI (2012) Tectonic lineament mapping of the Thaumasia plateau, Mars: comparing results from photointerpretation and a semi-automatic approach. Comput Geosci 48:162–172. CrossRefGoogle Scholar
  54. Wheeler RL (1983) Linesmanship and the practice of linear geo-art: Discussion and reply: Discussion. GSA Bulletin, 94(11):1377–1378CrossRefGoogle Scholar
  55. Zhang X, Li P (2014) Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int J Appl Earth Obs Geoinf 31:95–109. CrossRefGoogle Scholar
  56. Zoheir B, Emam A (2012) Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the south Eastern Desert, Egypt. J Afr Earth Sci 66–67:22–34. CrossRefGoogle Scholar
  57. Zoheir B, Emam A (2014) Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi-Heiani belt, Egypt: a case study from the Haimur deposit. J Afr Earth Sci 99:150–164. CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Mahamat Ouchar Al-Djazouli
    • 1
    Email author
  • Karim Elmorabiti
    • 1
  • Basem Zoheir
    • 2
    • 3
  • Abdelmejid Rahimi
    • 4
  • Omayma Amellah
    • 1
  1. 1.Laboratory of Geology and Oceanology, Department of Geology, Faculty of Science- TetouanAbdelmalek Essaadi UniversityTetouanMorocco
  2. 2.Department of Geology, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Institute of GeosciencesUniversity of KielKielGermany
  4. 4.Laboratory of Geodynamics and Geomatics (L2G), Department of Geology, Faculty of ScienceChouaib Doukkali UniversityEl JadidaMorocco

Personalised recommendations