Advertisement

Hydrodynamic and groundwater vulnerability assessment of the shallow aquifer of the Foumban locality (Bamoun plateau, Western-Cameroon)

  • Z. MfonkaEmail author
  • J. R. Ndam Ngoupayou
  • A. Kpoumie
  • P-D. Ndjigui
  • M. Zammouri
  • A. N. Ngouh
  • O. F. Mouncherou
  • O. F. Mfochivé
  • F. Rakotondrabe
Original Paper
  • 50 Downloads

Abstract

This study was carried out to assess the vulnerability of the shallow aquifer in the Foumban locality (West-Cameroon). Foumban is a savannah zone where the climate is that of a humid tropical mountain. The geological substratum consists of plutono-metamorphic rocks on which volcanic outflows (plateau basalts) are found at some places. During the period from September 2013 to August 2014, 40 wells were subjected to a piezometric monitoring coupled with the DRASTIC method applied in three small representative areas of the Foumban locality. From a hydrodynamic point of view, the wells with the water fluctuation that do not exceed 2 m are located in the low relief zones and at the level of the slope failure zones where the altitudes are less than 1135 m, whereas the fluctuations ranging between 2 and 6 m are observed in the high relief zone. The piezometric variations generally follow those of rain with nevertheless some relative particularity. These reactions are related to the physical and hydrodynamic characteristics of the study area. In terms of the vulnerability of the aquifer, the DRASTIC method show that the study area can be sub-divided into low and moderate vulnerability risk zones. The first most vulnerable zone is the Nga basin followed by Lompit and Mfomchout basins. The sensitivity analysis and the multivariate statistical tests show that the depth to water table and the impact of vadose zone were the most significant parameters in the vulnerability assessment. This study could be more useful for sustainable water resources management and aquifer conservation.

Keywords

Foumban locality in Western-Cameroon Hydrodynamic DRASTIC Vulnerability Topography Watershed 

Notes

Acknowledgements

The author thanks Pr. Abdullah M. Al-Amri, the Editor in Chief of Arabian Journal of Geosciences, the Associate Editor, and the two anonymous reviewers.

Funding

The authors thank the PAFROID educational grant program “Number HDP2A”, UNESCO through ANESI scholarships programs, Laboratory of Mineral Resources and Environment of the Department of Geology, Faculty of Science, University of Tunis El Manar.

Supplementary material

12517_2019_4328_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1701 kb)

References

  1. Action Contre la Faim (2008) Eau-Assainissement-Hygiène pour les populations à risque. Ed. Hermann, Paris 785pGoogle Scholar
  2. Akenji VN, Ako Ako A, Akoachere RA II, Takahiro H (2015) DRASTIC-GIS model for assessing vulnerability to pollution of the phreatic aquiferous formations in Douala-Cameroon. J Afr Earth Sci 102:180–190.  https://doi.org/10.1016/j.jafrearsci.11.001 CrossRefGoogle Scholar
  3. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS. Remote Sens DRASTIC App Geogr 23:303–324.  https://doi.org/10.1016/j.apgeog.2003.08.007 CrossRefGoogle Scholar
  4. Alassane A (2004) Etude hydrogéologique du continental terminal et des formations de la plaine littorale dans la région de Porto Novo (Sud du Benin): Identification des aquifères et vulnérabilité de la nappe superficielle. Ph.D Thesis, Univ Cheikh Anta DiopGoogle Scholar
  5. Aller L, Bennet T, Lehr HJ, Petty JR, Hackett G (1987) DRASTIC; a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. http://WWW.epa.gov/region5/waste/clintonlandfill/PDFClintonLFChemicalWaste_USEPAApplication/cl_130pdf. Accessed 10 Feb 2010
  6. Amjad A, Issam Al-Khatib A (2015) Hazard and risk assessment of pollution on the groundwater resources and residents health of Salfit District, Palestine. J Hydrol 4:472–486.  https://doi.org/10.1016/j.ejrh.07.006 CrossRefGoogle Scholar
  7. Anjali Singh Srivastav SK, Sudhir Kumar G, Chakrapani J (2015) A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ Earth Sci 74:5475–5490.  https://doi.org/10.1007/s12665-015-4558-5 CrossRefGoogle Scholar
  8. Antonino P, Gioacchino C, Rocco F (2015) Groundwater nitrate risk assessment using intrinsic vulnerability methods: a comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J Geochem Explor 156:89–100.  https://doi.org/10.1016/j.gexplo.05.002 CrossRefGoogle Scholar
  9. Bartzas G, Tinivella F, Medini L, Zaharaki D, Komnitsas K (2015) Assessment of groundwater contamination risk in an agricultural area in North Italy. Inf Pro Agric 2:109–129.  https://doi.org/10.1016/j.inpa.06.004 CrossRefGoogle Scholar
  10. Bon AF (2017) Modélisation de la structure et du fonctionnement des aquifères du socle fracturé et altéré dans le bassin versant de l’Olézoa, Yaoundé-Cameroun. Ph.D Thesis, Univ Yaoundé IGoogle Scholar
  11. Bon AF, Ndam Ngoupayou JR, Ewodo Mboudou G, Ekodeck GE (2016a) Caractérisation hydrogéologique des aquifères de socle altéré et fissuré du bassin versant de l’olézoa à Yaoundé, cameroun. Rev Sci Eau 29(2):149–166Google Scholar
  12. Bon AF, Ombolo A, Ewodo Mboudou G, Ndam Ngoupayou JR, Ekodeck GE (2016b) Estimation of hydraulic conductivity of soils at a watershed-scale using Porchet’s method: application in the Olezoa watershed, Yaoundé, Cameroon. Int J Geosci 7:397–408.  https://doi.org/10.4236/ijg.2016.73031 CrossRefGoogle Scholar
  13. Boubakar Hassane A (2010) Aquifères superficiels et profonds et pollution urbaine en Afrique : Cas de la communauté urbaine de Niamey (Niger). Ph.D Thesis, Univ Abdou Moumouni of NiameyGoogle Scholar
  14. Bouvier P (1990) Le travail au quotidien. Une démarche socio-anthropologique. Rev Fr Sociol 31(4):659–661CrossRefGoogle Scholar
  15. Braun JJ, Viers J, Dupre B, Polve M, Ndam Ngoupayou JR, Muller J-P (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta 62:273–299CrossRefGoogle Scholar
  16. Braun JJ, Marechal JC, Riotte J, Boeglin JL, Bedimo Bedimo JP (2012) Elemental weathering fluxes and saprolite production rate in a central African lateritic terrain (Nsimi, South Cameroon). Geochim Cosmochim Acta 99:243–270CrossRefGoogle Scholar
  17. BUCREP (2010) Troisième Recencesment Général de la Population et de l'Habitat du Cameroun. Technical report. BUCREP, Yaoundé, pp 56Google Scholar
  18. Castany G (1998) Hydrogeologie: principes et methode 2e. Dunod, ParisGoogle Scholar
  19. Chandoul IR, Bouaziz S, Dhia HB (2014) Groundwater vulnerability assessment using GIS-based RASTIC models in shallow aquifer of Gabes north (south East Tunisia). Arab J Geosci 8:7619–7629.  https://doi.org/10.1007/s12517-014-1702-6 CrossRefGoogle Scholar
  20. Charlier JB, Lachassagne P, Ladouche B, Cattan P, Moussa R, Voltz M (2011) Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: a multi-disciplinary experimental approach. J Hydrol 398:155–170.  https://doi.org/10.1016/j.jhydrol.2010.10.006 CrossRefGoogle Scholar
  21. Chenini I, Zghibi A, Kouzana L (2015) Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: state of the art and a case study. J Afr Earth Sci 109:11–26.  https://doi.org/10.1016/j.jafrearsci.05.008 CrossRefGoogle Scholar
  22. Chihi H, de Marsily G, Belayouni H, Yahyaoui H (2015) Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: Example of the “Jeffara de Medenine” system, south–east Tunisia. J Hydrol 4:410–430.  https://doi.org/10.1016/j.ejrh.2015.07.004 CrossRefGoogle Scholar
  23. Courtois N, Lachassagne P, Wyns R, Blanchin R, Bougaïré FD, Somé S, Tapsoba A (2009) Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso. Groundwater 48:269–283.  https://doi.org/10.1111/j.1745-6584.2009.00620.x CrossRefGoogle Scholar
  24. Dewandel B, Maréchal JC, Bour O, Ladouche B, Ahmed S, Chandra S, Pauwels H (2012) Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J Hydrol 416:83–97CrossRefGoogle Scholar
  25. Dipankar S, Fakhre A (2014) Groundwater vulnerability assessment using DRASTIC and pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ Monit Assess 186:8741–8763.  https://doi.org/10.1007/s10661-014-4041-x CrossRefGoogle Scholar
  26. Djeuda Tchapnga HB, Tanawa E, Temgoua E, Siakeu J, Ngo Massana B (1999) In: Vicat JP, Bilong P (eds) Modèles de circulation, mécanismes de recharge et temps de séjour des eaux souterraines des altérites en milieu cristallin: cas du bassin versant de l’Anga’a, Yaoundé – Cameroun. Collection Géologie et environnement au Cameroun 2/1999, Sci. Presses. Univ. Yaoundé I, pp 117–126Google Scholar
  27. Durand V, Léonardi V, de Marsily G, Lachassagne P (2017) Quantification of the specific yield in a two-layer hard-rock aquifer model. J Hydrol 551:328–339.  https://doi.org/10.1016/j.jhydrol.2017.05.013 CrossRefGoogle Scholar
  28. Edet A (2014) An aquifer vulnerability assessment of the Benin formation aquifer, Calabar, South-Eastern Nigeria, using DRASTIC and GIS approach. Environ Earth Sci 71:1747–1765CrossRefGoogle Scholar
  29. Elfarrak H, Hakdaoui M, Fikri A (2014) Development of vulnerability through the DRASTIC method and geographic information system (GIS) (case groundwater of Berrchid), Morocco. J Geogr Inf Syst 6:45–58Google Scholar
  30. Elham F, Ata Allah N, Asghar Asghari M, Tsai FTC, Barnali D (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. J Hydrol 503:89–100.  https://doi.org/10.1016/j.jhydrol.08.038 CrossRefGoogle Scholar
  31. Engel B, Navulur K, Cooper K, Hahn L (1996) Estimating groundwater vulnerability to non point source pollution from nitrates and pesticides on a regional scale. IAHS Publ 235:521–526Google Scholar
  32. Fantong WY, Takounjou AF, Fantong EB, Banseka HS, Gwanfogbe CD, Ayonghe SN, Tanyileke GZ (2013) Increased risk of fluorosis and methemoglobinemia diseases from climate change: evidence from groundwater quality in Mayo Tsanaga River basin, Cameroon. J Cameroon Acad Sci 11(1):55–60Google Scholar
  33. Feumba R (2015) Hydrogéologie et evaluation de la vulnérabilité des nappes dans le bassin versant de Besseke (Douala, Cameroun). Ph/D Thesis, Univ Yaoundé IGoogle Scholar
  34. Fouépé Takounjou A, Fantong W, Ndam Ngoupayou J, Sigha Nkamdjou L (2012) Comparative analysis for estimating hydraulic conductivity values to improve the estimation of groundwater recharge in Yaoundé-Cameroon. Br J Environ Clim Chan 2(4):391–409Google Scholar
  35. Fouépé Takounjou A, Kuitcha D, Fantong WY, Ewodo MG, Khan Haris H, Issa TO (2013) Assessing groundwater nitrate pollution in Yaoundé, Cameroon: modelling approach. World Appl Sci J 23(3):333–344.  https://doi.org/10.5829/idosi.wasj.2013.23.03.321 CrossRefGoogle Scholar
  36. Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559CrossRefGoogle Scholar
  37. Guihéneuf N, Boisson A, Bour O, Dewandel B, Perrin J, Dausse A, Viossanges M, Chandra S, Ahmed S, Maréchal JC (2014) Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth dependent fracture connectivity. J Hydrol 511:320–334.  https://doi.org/10.1016/j.jhydrol.01.061 CrossRefGoogle Scholar
  38. GWP MINEE-Cmr (2009) Etat des lieux du secteur de l’eau au Cameroun : connaissances et usages des ressources en eau (tome 1). GWP-Cmr, Yaoundé 215 ppGoogle Scholar
  39. Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K (2011) Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J Agric Sci Technol 13:239–249Google Scholar
  40. Kaliraj S, Chandrasekar N, Simon Peter T, Selvakumar S, Magesh NS (2014) Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ Monit Assess 187:4073.  https://doi.org/10.1007/s10661-014-4073-2 CrossRefGoogle Scholar
  41. Kamagaté B (2006) Fonctionnement hydrologique et origine des écoulements sur un bassin versant de milieu tropical de socle au Bénin: bassin versant de la Donga (haute vallée de l’Ouémé). Ph.D Thesis, Univ of Montpellier II, Sciences et Technique du LanguedocGoogle Scholar
  42. Kazakis N, Konstantinos Voudouris K (2011) Comparison of three applied methods of groundwater vulnerability mapping: a case study from the Florina basin, Northern Greece. In Advances in the Research of Aquatic Environment, pp 359–367CrossRefGoogle Scholar
  43. Khemiri S, Khnissi A, Ben Alaya M, Saidi S, Zargouni F (2013) Using GIS for the comparison of intrinsic parametric methods assessment of groundwater vulnerability to pollution in scenarios of semi-arid climate. The Case of Foussana Groundwater in the Central of Tunisia. J Water Resour Prot 5:835–845.  https://doi.org/10.4236/jwarp.58084 CrossRefGoogle Scholar
  44. Kringel R, Rechenburg A, Kuitcha D, Fouépé A, Bellenberg S, Kengne IM, Fomo MA, Fomo MA (2016) Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaoundé/Cameroon. Sci Total Environ 547:382–395.  https://doi.org/10.1016/j.scitotenv.2015.12.090 CrossRefGoogle Scholar
  45. Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 10:1365–3121Google Scholar
  46. Lachassagne P, Dewandel B, Wyns R (2015) The conceptual model of hard rock aquifers and its pratical application. Conference paper http://researchgate.net279189115. Accessed Nov 2016
  47. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89CrossRefGoogle Scholar
  48. Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int J Geogr Inf Syst 4(4):413–428CrossRefGoogle Scholar
  49. Maréchal JC, Wyns R, Lachassagne P, Kambhampati S, Touchard F (2003) Vertical anisotropy of hydraulic conductivity in fissured layer of hard-rock aquifers due to the geological structure of weathering profiles. C R Geosci 335(5):451–460.  https://doi.org/10.1016/S1631-0713(03)00082-8 CrossRefGoogle Scholar
  50. Mfonka Z, Ndam Ngoupayou JR, Ndjigui PD, Zammouri M, Kpoumie A, Rasolonana E (2015) Hydrochimie et potabilité des eaux du bassin versant du Nchi dans le plateau Bamoun (Ouest Cameroun). Int J Biol Chem Sci 9(4):2000–2018.  https://doi.org/10.4314/ijbcs.v9i4.39 CrossRefGoogle Scholar
  51. Mouncherou OF (2016) Hydrogéochimie des systèmes d’aquifères associés aux roches volcaniques et aux sources minéralisées du Plateau Bamoun, Ligne Volcanique du Cameroun (LVC). Ph/D. Thesis, Univ of Yaoundé IGoogle Scholar
  52. Moundi A (2004) Les basaltes des plateaux du plateau Bamoun : Pétrologie-géochimie et Géochronologie : implications sur les sources de magmas, leurs contextes et évolutions géodynamiques. Ph.D Thesis, Univ of Yaoundé IGoogle Scholar
  53. Moundi A, Wandji P, Bardintzeff JM, Ménard JJ, Atouba Okomo LC, Mouncharou OF, Reusser E, Bellon H, Tchoua F (2007) Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la ligne volcanique du Cameroun. C R Geosci 339:396–406CrossRefGoogle Scholar
  54. Moupou M (1999) Fronts pionniers et structuration de l’espace dans le Cameroun méridional: de nouveaux territoires en mutation rapide. Les Cahiers d’Outre-Mer http://com.revues.org/5878;  https://doi.org/10.4000/com.5878 CrossRefGoogle Scholar
  55. Napolitano P, Fabri AG (1996) Application of Geographic Information Systems in Hydrology and Water Resources Management. In proceeding of the HydroGis'96 Conference IAHS publ. N° 235, pp. 559–566. Vienna, AustraliaGoogle Scholar
  56. Ndam Ngoupayou JR, Dzana JG, Kpoumie A, Tanwi Ghogomu R, Fouepe Takounjou A, Braun JJ, Ekodeck GE (2016) Present-day sediment dynamics of the sanaga catchment (Cameroon): from the total suspended sediment (TSS) to erosion balance. Hydrol Sci J 61:1080–1093.  https://doi.org/10.1080/02626667 CrossRefGoogle Scholar
  57. Neshat A, Biswajeet P, Mohsen D (2014) Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86CrossRefGoogle Scholar
  58. Njonfang E, Ngako V, Kwekam M, Affaton P (2006) Les orthogneiss calco-alcalins de Foumban-Bankim: Témoins d’une zone interne de marge active panafricaine en cisaillement. C R Geosci 338:606–616.  https://doi.org/10.1016/j.crte.2006.03.016 CrossRefGoogle Scholar
  59. Njonfang E, Ngako V, Moreau C, Affaton P, Diot E (2008) Restraining bends in high temperature shear zones: the Central Cameroon shear zone, Central Africa. J Afr Earth Sci 52:9–20.  https://doi.org/10.1016/j.jafrearsci.2008.03.002 CrossRefGoogle Scholar
  60. Njoya A (2007) Etude du gisement de kaolin de Mayouom (Ouest-Cameroun): Cartographie, minéralogie et géochimie. Ph.D Thesis, Univ of Yaoundé IGoogle Scholar
  61. Nkalih Mefire A (2016) Cartographie et propriétés physico-chimiques des argiles de Foumban (Ouest-Cameroun). Ph.D Thesis, Univ of Yaoundé I (Cameroon) and Univ of LiègeGoogle Scholar
  62. Odling NE, Perulero Serrano R, Hussein MEA, Riva M, Guadagnini A (2014) Detecting the vulnerability of groundwater in semi-confined aquifers using barometric response functions. J Hydrol 520:143–156.  https://doi.org/10.1016/j.jhydrol.11.016 CrossRefGoogle Scholar
  63. Okomo Atouba LC, Chazot G, Moundi A, Agranier A, Bellon H, Nonnotte P, Nzenti J-P, Kankeu B (2016) Mantle sources beneath the Cameroon volcanic line: geochemistry and geochronology of the Bamoun plateau mafic rocks. Arab J Geosci 9:270–282.  https://doi.org/10.1007/s12517-015-2285-6 CrossRefGoogle Scholar
  64. Olivry J-C (1986) Fleuves et Rivières du Cameroun, Monographies hydrologiques. MESRES-ORSTOM, Bondy, 733 ppGoogle Scholar
  65. Perrin J, Ahmed S, Hunkeler D (2011) The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India. Hydrogeol J 19:1189–1201CrossRefGoogle Scholar
  66. Prasad RK, Singh VS, Krishnamacharyulu SKG, Banerjee P (2010) Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer. Environ Monit Assess 176:143–155CrossRefGoogle Scholar
  67. Rakotondrabe F, Ndam Ngoupayou JR, Mfonka Z, Rasolomanana EH, Nyangono Abolo AJ, Banakeng LA, Ako Ako A, Rakotondrabe MH (2017a) Assessment of surface water quality of Bétaré-Oya gold mining area (East-Cameroon). J Water Resour Prot 9:960–984.  https://doi.org/10.4236/jwarp.2017.98064 CrossRefGoogle Scholar
  68. Rakotondrabe F, Ndam Ngoupayou JR, Mfonka Z, Rasolomanana EH, Nyangono Abolo AJ, Ako Ako A (2017b) Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): multivariate statistical analysis approach. Sci Total Environ 610(611):831–844.  https://doi.org/10.1016/j.scitotenv.2017.08.080 CrossRefGoogle Scholar
  69. Rodier J (2009) L'analyse de l'Eau Naturelle et Eaux Résiduaires, Eau de Mer. 9 Edition, Dunod, Paris, 1382 ppGoogle Scholar
  70. Roques C, Aquilina L, Bour O, Maréchal J-C, Dewandel B, Pauwels H, Labasque T, Vergnaud-Ayraud V (2014) Groundwater sources and geochemical processes in a crystalline fault aquifer. J Hydrol 519:3110–3128.  https://doi.org/10.1016/j.jhydrol.2014.10.052 CrossRefGoogle Scholar
  71. Ruopu L, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45.  https://doi.org/10.1016/j.scitotenv.2013.01.011 CrossRefGoogle Scholar
  72. Sathees K, Thirumalaivasan D, Nisha R, Samson M (2012) Groundwater vulnerability assessment using SINTACS model. Geomat Nat Haz Risk 4:339–354.  https://doi.org/10.1080/19475705.201 CrossRefGoogle Scholar
  73. Segalen P (1967) Les sols et la géomorphologie du Cameroun. Cahiers ORSTOM, Série pedologie 5(2):137–188Google Scholar
  74. Shanshan H, Jie L, Guangming Z, Min X, Chang Z, Yujie Y, Xiaodong L, Ping L, Jiayu L, Lu H (2015) How to manage future groundwater resource of China under climate change and urbanization: an optimal stage investment design from modern portfolio theory. Water Res 85:31–37.  https://doi.org/10.1016/j.watres.08.007 CrossRefGoogle Scholar
  75. Tardy Y (1993) Pétrrologie des laterites et des sols tropicaux Masson, Paris, 459 ppGoogle Scholar
  76. Tchakam Kamtchueng B, Fantong WY, Wirmvem MJ, Tiodjio RE, Fouepe Takounjou A, Ndam Ngoupayou JR, Kusakabe M, Zhang J, Ohba T, Tanyileke G, Hell JV, Ueda A (2016) Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization. Environ Monit Assess 188:524.  https://doi.org/10.1007/s10661-016-5514-x CrossRefGoogle Scholar
  77. Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, de Wit M, Barbey P (2017) The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic central African orogenic belt (Bafia area, Cameroon). Precambrian Res 299:210–229.  https://doi.org/10.1016/j.precamres.2017.07.001 CrossRefGoogle Scholar
  78. Thornwaite CW (1954) The measurement of potential evapotranspiration. John P. Mather Seebrook, New Jersey 222 pGoogle Scholar
  79. Tita MA (2008) Water pollution of the Nkoup river system and its environmental impact on Foumbot town (Western Cameroon) Ph.D Thesis, Univ of Yaoundé IGoogle Scholar
  80. Van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer-Verlag, Heidelberg. Anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J Hydrol 414(415):435–451Google Scholar
  81. Wandji P, Tchokona Seuwui D, Bardintzeff JM, Bellon H, Platevo B (2008) Rhyolites of the Mbépit Massif in the Cameroon volcanic line: an early extrusive volcanic episode of Eocene Age. Mineral Petrol 94:271–286.  https://doi.org/10.1007/s00710-008-0013- CrossRefGoogle Scholar
  82. Weecksteen (1957) Carte Geologique de reconnaissance au 1/500000, feuille Douala-Est avec notice explicative. Direction des Mines et Geologie Cameroun, p 35Google Scholar
  83. WHO (2011) Guidelines for drinking-water quality recommendations. Fourth edition. WHO, Geneva ,p 518Google Scholar
  84. Yameogo Ouandaogo S (2008) Ressource en eau souterraines du centre urbain de Ouagadougou au Burkina-Faso qualité et vulnérabilité. Ph.D Thesis, Univ of Avignon et des pays de VaucluseGoogle Scholar
  85. Yang YS, Wang L (2010) Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol Sci J 55:1206–1216CrossRefGoogle Scholar
  86. Ziem A Bidias LA, Moundi A, Takodjou Wambo JD (2017) Transitional basalts and eruptive dynamisms around Nkoumelap locality (west of the Bamoun plateau, Cameroon volcanic line): petrography and volcanic risks’ evaluation. J Geosci Geom 5(2):65–77 http://pubs.sciepub.com/jgg/5/2/3. Accessed 5 May 2017Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Z. Mfonka
    • 1
    Email author
  • J. R. Ndam Ngoupayou
    • 1
  • A. Kpoumie
    • 2
  • P-D. Ndjigui
    • 1
  • M. Zammouri
    • 3
  • A. N. Ngouh
    • 4
  • O. F. Mouncherou
    • 4
  • O. F. Mfochivé
    • 1
  • F. Rakotondrabe
    • 1
  1. 1.Department of Earth SciencesThe University of Yaoundé IYaoundéCameroon
  2. 2.Faculty of ScienceUniversity of MarouaMarouaCameroon
  3. 3.Department of Earth SciencesUniversity of Tunis El ManarTunisTunisia
  4. 4.Institute for Geological and Mining ResearchMinistry of Scientific Research and InnovationYaoundéCameroon

Personalised recommendations