Advertisement

Advanced interpretation of gravity data for determining the structural framework: case of Fkirine and Djebibina area (transition between central Tunisian Atlas and Sahel domain, North Africa)

  • H. MouakharEmail author
  • H. GabtniEmail author
  • A. Bel KahlaEmail author
AGIC 2017
  • 8 Downloads
Part of the following topical collections:
  1. Geology of North Africa and Mediterranean regions

Abstract

The transitional zone between the Atlas Province and the Sahel domain has shown several structural complexities. In order to better understand the structural framework of this zone, a gravity study has been carried out based on a qualitative and quantitative interpretation of gravity data. This study area (Fkirine and Djebibina maps) has indicated that four major tectonic directions underlay the area. We denote NE-SW, NW-SE, E-W, and N-S fault directions. The E-W and N-S strike-slip faults have played a major role in the structuration of the Sahel domain. The depth of E-W faults exceeds 5 km, which explain their deep role in the area structuration. The major thrust front of Zaghouan has been shown as a discontinuous line, due to the change of the tectonic stress field from the Upper Miocene until the Plio-Quaternary. The change of the compression regime direction from NW-SE to N-S during the Plio-Quaternary induced a transtensional movement in Fkirine and Djebibina area that created new depressive structures as Draa Ben Jouder Graben. Applying the gravity method in this area has emerged several information, which are used to better understand the architecture of the region and the impact of faults in the geodynamic evolution.

Keywords

Gravity Qualitative and quantitative Structural Draa Ben Jouder Graben Atlas Sahel 

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of DNO Tunisia AS. We are very grateful to the OFFICE NATIONAL DES MINES (ONM) and ENTREPRISE TUNISIENNE D’ACTIVITES PETROLIERES (ETAP) for the scientific supports. We thank Mohamed Gharbi (Ass. Professor, CERTE) and Fares Khemiri (Senior Geologist, ETAP) for helpful discussions. The research was supported also by the GEORESSOURCES LABORATORY (LR15CERTE01), CENTRE DE RECHERCHES ET DES TECHNOLOGIES DES EAUX (CERTE, Tunisia).

References

  1. Agocs WB (1951) Least-squares residual anomaly determination. Geophysics 16:686–696.  https://doi.org/10.1190/1.1437720 CrossRefGoogle Scholar
  2. Anderson JE (1996) The Neogene structural evolution of the western margin of the Pelagian Platform, central Tunisia. J Struct Geol 18(6):819–833.  https://doi.org/10.1016/S0191-8141(96)80015-0 CrossRefGoogle Scholar
  3. Arfaoui A et al (2017) Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications. J Afr Earth Sci Elsevier BV 129:403–416.  https://doi.org/10.1016/j.jafrearsci.2017.01.013 CrossRefGoogle Scholar
  4. Bahrouni N, Bouaziz S, Soumaya A, Ben Ayed N, Attafi K, Houla Y, el Ghali A, Rebai N (2014) Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach. J Seismol 18(2):235–256.  https://doi.org/10.1007/s10950-013-9395-y CrossRefGoogle Scholar
  5. Bajanik S, Biely A, Lajmi T (1974) Enfidha-Ville, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°43, Notice Explicative de l’ONM. TunisGoogle Scholar
  6. Bédir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de décrochements de la marge atlasique de la Tunisie. Séismo-stratigraphie, Séismo-tectonique et implications pétrolières. Thèse de Doctorat d'Etat, Université de Tunis, p 420Google Scholar
  7. Bédir M et al (2001) Subsurface Mesozoic basins in the central Atlas of Tunisia: tectonics, sequence deposit distribution, and hydrocarbon potential. AAPG Bull 85(5):885–908Google Scholar
  8. Bédir M et al (2016a) New petroleum systems related to the structuring of Meso-Cenozoic basins in North African plate Tunisian margin. AAPG Annual Convention & Exhibition, Calagary, (Search and Discovery Article, 30459), p 2Google Scholar
  9. Bédir M et al (2016b) Seismic tectono-stratigraphy of fluvio-deltaic to deep marine Miocene silicoclastic hydrocarbon reservoir systems in the Gulf of Hammamet, northeastern Tunisia. Arab J Geosci 9(19).  https://doi.org/10.1007/s12517-016-2745-7
  10. Belguith Y et al (2011) Tectonophysics Neogene extensional deformation and related stress regimes in central Tunisia. Tectonophysics Elsevier BV 509(3–4):198–207.  https://doi.org/10.1016/j.tecto.2011.06.009 CrossRefGoogle Scholar
  11. Belguith Y et al (2013) Analogue modelling of Late Miocene-Early Quaternary continental crustal extension in the Tunisia-Sicily Channel area. Tectonophysics Elsevier BV 608:576–585.  https://doi.org/10.1016/j.tecto.2013.08.023 CrossRefGoogle Scholar
  12. Ben Ayed N (1993) Évolution tectonique de l′avant pays de la chaîne alpine de Tunisie du début Mésozoïque à l′Actuel, Annales des Mines et de Géologie, Tunisie, Editions du Service géologique de Tunisie, 32, p. 286Google Scholar
  13. Ben Ferjani A, Burollet P, Mejri, F. (1990) Petroleum Geology of Tunisia, Entreprise Tunisienne des Activités Pétrolières (ETAP publication), p. 194Google Scholar
  14. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University, New YorkCrossRefGoogle Scholar
  15. Blakely RJ, Simpson R (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51:1494–1498CrossRefGoogle Scholar
  16. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the Northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357(1–4):227–253.  https://doi.org/10.1016/S0040-1951(02)00370-0 CrossRefGoogle Scholar
  17. Boukadi N, Bédir M (1996) L’halocinèse en Tunisie : contexte tectonique et chronologique des évènements. C R Acad Sci Paris 322(7):587–594Google Scholar
  18. Bracène R, Frizon de Lamotte D (2002) The origin of intraplate deformation in the Atlas system of western and Central Algeria: from Jurassic rifting to Cenozoic-Quaternary inversion. Tectonophysics 357(1–4):207–226.  https://doi.org/10.1016/S0040-1951(02)00369-4 CrossRefGoogle Scholar
  19. Buness H et al (1989) The EGT-85 seismic experiment in Tunisia—a reconnaissance of the deep structures. In Sixth Workshop on the European Geotraverse project, data compilations and synoptic interpretation, European Science Foundation, Strasbourg, pp. 197–210Google Scholar
  20. Buness H et al (1992) The EGT’85 seismic experiment in Tunisia: a reconnaissance of the deep structures. Tectonophysics 207:245–267CrossRefGoogle Scholar
  21. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Min Geol (Tunis) 18:350Google Scholar
  22. Burollet PF (1981) The Pelagian Sea east of Tunisia: bioclastic deposition under temperate climate. Mar Geol 44(1–2):157–170.  https://doi.org/10.1016/0025-3227(81)90116-X CrossRefGoogle Scholar
  23. Burollet PF, Mugniot JM, Sweeney P (1973) The geology of the Pelagian block: the margins and basins of southern Tunisia and Tripolotania. Compagnie Française des Pétroles, pp 331–359Google Scholar
  24. Burollet PF, Mugniot J, Sweeney P (1978) The geology of the Pelagian block: the margins and basins of southern Tunisia and Tripolitania. In: Nairn AEM, Kanes WH, Stehli FG (eds) The ocean basins and margins. Boston, Springer US, pp 331–359.  https://doi.org/10.1007/978-1-4684-3039-4 CrossRefGoogle Scholar
  25. Caire A (1977) Interprétation tectonique unitaire de l’Atlas à fossés, C. R. Ac. Sciences, Paris, 284, 5, p 349–352Google Scholar
  26. Chihi L (1995) Les fossés Néogènes à Quaternaires de la Tunisie et de la Mer pélagienne : Leur étude structurale et leur signification dans le cadre géodynamique de la Méditerranée centrale. Thèse de Doctorat d'Etat, Faculté des Sciences de Tunis, Université Tunis II, p 325Google Scholar
  27. Dhahri F, Boukadi N (2007) Chevauchements différentiels et décrochements dans la chaîne atlasique de Tunisie : exemple des jebels Ousselet, Bou Dabbous et Bou Hajar. Compt Rendus Geosci 339(5):347–357.  https://doi.org/10.1016/j.crte.2007.03.003 CrossRefGoogle Scholar
  28. Dhahri F, Boukadi N (2010) The evolution of pre-existing structures during the tectonic inversion process of the Atlas chain of Tunisia. J Afr Earth Sci Elsevier Ltd 56(4–5):139–149.  https://doi.org/10.1016/j.jafrearsci.2009.07.002 CrossRefGoogle Scholar
  29. Dhahri F, Tanfous D, Gabtni H, Boukadi N (2015) Structural and geodynamic study in central Tunisia using field and geophysical data: new structural interpretation of the N-S axis and associated Atlassic structures. Int J Earth Sci 104(7):1819–1835.  https://doi.org/10.1007/s00531-015-1159-1 CrossRefGoogle Scholar
  30. DNO Internal Report (2015) Petroleum evalutation of Fkirine permit, DNO Tunisia AS, 91pGoogle Scholar
  31. Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting. McGraw-Hill, New YorkGoogle Scholar
  32. EH-1 Well Report (1955) ETAP Report, Tunisia, p 12Google Scholar
  33. Ellouz N (1984) Étude de la subsidence de la Tunisie atlasique orientale et de la mer pélagienne. Thèse de Doctorat, Université Pierre et Marie Curie, Paris-6, p 129Google Scholar
  34. Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19(4):740–761CrossRefGoogle Scholar
  35. Frizon de Lamotte D et al (2009) Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics Elsevier BV 475(1):9–28.  https://doi.org/10.1016/j.tecto.2008.10.024 CrossRefGoogle Scholar
  36. Frizon de Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau JC, Blanpied C, Ringenbach JC (2011) The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: initial geometry and timing of the inversion processes. Tectonics 30(3):1–22.  https://doi.org/10.1029/2010TC002691 CrossRefGoogle Scholar
  37. Gabtni H (2005) Gravity contribution for the study of the deep structures of the Tunisian Sahel domain (Kairouan–Sousse–Monastir area case). Compt Rendus Geosci 337(16):1409–1414.  https://doi.org/10.1016/j.crte.2005.09.007 CrossRefGoogle Scholar
  38. Gabtni H, Jallouli C (2017) Regional-residual separation of potential field: an example from Tunisia. J Appl Geophys Elsevier BV 137:8–24.  https://doi.org/10.1016/j.jappgeo.2016.12.011 CrossRefGoogle Scholar
  39. Gabtni H, Jallouli C, Mickus K (2012) Basement structure of southern Tunisia as determined from the analysis of gravity data: implications for petroleum exploration. Pet Geosci 18(2):143–152.  https://doi.org/10.1144/1354-079311-050.1354-0793/12/ CrossRefGoogle Scholar
  40. Gharbi M et al (2014) Recent spatial and temporal changes in the stress regime along the southern Tunisian Atlas front and the Gulf of Gabes: new insights from fault kinematics analysis and seismic profiles. Tectonophysics Elsevier BV 626(1):120–136.  https://doi.org/10.1016/j.tecto.2014.04.003 CrossRefGoogle Scholar
  41. Gharbi M, Espurt N, Masrouhi A, Bellier O, Amari EA (2015) Style of Atlassic tectonic deformation and geodynamic evolution of the southern Tethyan margin, Tunisia. Mar Pet Geol Elsevier Ltd 66:801–816.  https://doi.org/10.1016/j.marpetgeo.2015.07.020 CrossRefGoogle Scholar
  42. Ghosh GK (2016) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the north-west Himalaya. Acta Geophysica 64(4):1112–1138.  https://doi.org/10.1515/acgeo-2016-0042 CrossRefGoogle Scholar
  43. Haller P (1983) Structure profonde du Sahel tunisien. Interprétation géodynamique. Thèse de Doctorat, Université de Besançon, p 163Google Scholar
  44. Hezzi I (2014) Caractérisation géophysique de la plateforme de Sahel, Tunisie Nord-orientale et ses conséquences géodynamiques. Thèse de Doctorat, Université Rennes1, 205p. Available at: https://ecm.univ-rennes1.fr/nuxeo/site/esupversions/e820dc01-eb74-411a-9971-19ea1f23aa0d
  45. Hlaiem A (1999) Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics 306(1):79–95.  https://doi.org/10.1016/S0040-1951(99)00045-1 CrossRefGoogle Scholar
  46. Houatmia F, Khomsi S, Bédir M (2015) Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (northeastern Tunisia). J Afr Earth Sci Elsevier Ltd 111:434–450.  https://doi.org/10.1016/j.jafrearsci.2015.08.019 CrossRefGoogle Scholar
  47. Hsu S-K., Sibuet J.C., Shyu C-T. (1996) High-resolution detection of geologic boundaries from potential-field anomalies: an enhanced analytic signal technique. Geophysics 61(2):373–386.  https://doi.org/10.1190/1.1443966
  48. Jacobsen BH (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics 52(8):1138.  https://doi.org/10.1190/1.1442378 CrossRefGoogle Scholar
  49. Jallouli C, Mickus K (2000) Regional gravity analysis of the crustal structure of Tunisia. J Afr Earth Sci 30(1):63–78.  https://doi.org/10.1016/S0899-5362(00)00008-7 CrossRefGoogle Scholar
  50. Jauzein A (1967) Contribution à l’étude géologique des confins de la dorsale tunisienne (Tunisie Septentrionale). Ann Mines et Géol 22:475Google Scholar
  51. Khomsi S, Bédir M, Ben Jemia MG, Zouari H (2004) Mise en évidence d’un nouveau front de chevauchement dans l’Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère. Compt Rendus Geosci 336(15):1401–1408.  https://doi.org/10.1016/j.crte.2004.06.007 CrossRefGoogle Scholar
  52. Khomsi S, Bédir M, Soussi M, Ben Jemia MG, Ben Ismail-Lattrache K (2006) Mise en évidence en subsurface d’événements compressifs Éocène moyen-supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord. Compt Rendus Geosci 338(1–2):41–49.  https://doi.org/10.1016/j.crte.2005.11.001 CrossRefGoogle Scholar
  53. Khomsi S et al (2009) An overview of the Late Cretaceous–Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian Atlas: structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics Elsevier BV 475(1):38–58.  https://doi.org/10.1016/j.tecto.2009.02.027 CrossRefGoogle Scholar
  54. Khomsi S, de Lamotte DF, Bédir M, Echihi O (2016) The Late Eocene and Late Miocene fronts of the Atlas Belt in eastern Maghreb: integration in the geodynamic evolution of the Mediterranean domain. Arab J Geosci 9(15).  https://doi.org/10.1007/s12517-016-2609-1
  55. Kjelkenes FS (2015) Structural analysis of the Jebel Fadeloun anticline, Tunisia: impact of fractures and faults on the petrophysical properties of carbonate rocks. Master Thesis, University of Bergen, p 90Google Scholar
  56. Klett TR (2001) Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta—the Bou Dabbous–Tertiary and Jurassic-Cretaceous composite, USGS bulletin, (2202–D), p. 149. Available at: http://pubs.usgs.gov/bul/b2202-d/
  57. Laaridhi Ouazaa N (1994) Etude minéralogique et géochimique des épisodes magmatiques mésozoïques et miocènes de la Tunisie, Thèse Doctorat Es Sciences, Univ. Tunis, 426pGoogle Scholar
  58. Meddeb S (1986) Sédimentation et tectonique polyphasée dans les dômes d’Enfida (Sahel Tunisien), Thèse de Doctorat, Univ. Paris-Sud, Osay, p 160 Google Scholar
  59. Mencik E, Stranik Z, Salaj, J (1978) Jebel Fkirine, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°42, Notice Explicative de l’ONM. TunisGoogle Scholar
  60. Midassi MS (1982) Regional gravity of Tunisia. Master Thesis, University of South Carolina, Columbia, p 125Google Scholar
  61. Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32(2–3):213–217.  https://doi.org/10.1016/0926-9851(94)90022-1 CrossRefGoogle Scholar
  62. Morgan M, Grocott J, Moody RT (1998) The structural evolution of the Zaghouan-Ressas Belt, northern Tunisia. Geol Soc Lond Spec Publ 132:405–422CrossRefGoogle Scholar
  63. Piqué A et al (2002) The Mesozoic-Cenozoic Atlas belt (North Africa): an overview. Geodin Acta 15(3):185–208.  https://doi.org/10.1016/S0985-3111(02)01088-4 CrossRefGoogle Scholar
  64. Rabhi M (1999) Contribution à l’étude stratigraphique et analyse de l’évolution géodynamique de l’axe Nord-Sud et des structures avoisinantes (Tunisie centrale). Thèse de Doctorat, Faculté des Sciences de Tunis, Université de Tunis II, p 206Google Scholar
  65. Rabhi M, Maamri R (2003) Sidi Bou Ali, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°49, Notice Explicative de l’ONM. TunisGoogle Scholar
  66. Simpson SM (1954) Least-squares polynomial fitting to gravitational data and density plotting by digital computer. Geophysics 19:808–811CrossRefGoogle Scholar
  67. SNJ-1 Well Report (1994) ETAP Report, ETAP Tunisia, p 31Google Scholar
  68. Souei A, Atawa M, Zouaghi T (2018) Hydrogeological framework and geometry modeling via joint gravity and borehole parameters, the Nadhour-Sisseb-El Alem basin (central-eastern Tunisia). J Afr Earth Sci Elsevier BV 139:76.  https://doi.org/10.1016/j.jafrearsci.2017.12.006 CrossRefGoogle Scholar
  69. Soumaya A, Ben Ayed N, Delvaux D, Ghanmi M (2015) Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for central Mediterranean. Tectonics 34(6):1154–1180.  https://doi.org/10.1002/2015TC003895 CrossRefGoogle Scholar
  70. Soumaya A et al (2016) Seismotectonics and seismic hazard map of Tunisia, Geophysical Research Abstracts_EGU General Assembly, 18(EGU2016), p. 8266Google Scholar
  71. Soussi M (2002) Le Jurassique de la tunisie Atlasique. Stratigraphie, Dynamique sédimentaire, Paléogéographie et Intérêt pétrolier. Thèse de Doctorat d'Etat, Université de Claude Bernard-Lyon 1, p 661Google Scholar
  72. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. GEOPHYSICS 35(2):293–302.  https://doi.org/10.1190/1.1440092 CrossRefGoogle Scholar
  73. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31–37.  https://doi.org/10.1190/1.1441278 CrossRefGoogle Scholar
  74. Touati M (1985) Étude géologique et géophysique de la concession Sidi El Itayem en Tunisie orientale, Sahel de Sfax. Thèse de Doctorat, Université Pierre-et-Marie-Curie, Paris-6, p 255Google Scholar
  75. Turki MM (1980) La « faille de Zaghouan » est la résultante de structures superposées (Atlas tunisien central), Société géologique de France, 7, pp. 321–325Google Scholar
  76. Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Thèse de Doctorat d'Etat, Faculté des sciences de Tunis, p 252Google Scholar
  77. Turki MM (1988) Polycinématique et contrôle sédimentaire associés sur la cicatrice Zaghouan-Nabhana. Centre des Sciences de la Terre, Institut National de Recherche Scientifique, Tunisie. Revue des Sciences de la Terre (7)Google Scholar
  78. Turki MM, Saadi M, Zaghbib-Turkib D (2002) Djebibina, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°48, Notice explicative de l’ONM. TunisGoogle Scholar
  79. Vedova BD, Lucazeau F, Pasquale V, Pellis G, Verdoya M (1995) Heat flow in the tectonic provinces crossed by the southern segment of the European Geotraverse. Tectonophysics 244(1–3):57–74.  https://doi.org/10.1016/0040-1951(94)00217-W CrossRefGoogle Scholar
  80. Whitehead N, Musselman C (2008) montaj Grav/Mag Interpretation: processing, analysis and visualization system for 3D inversion of potential field data for oasis montaj v6. 3, Geosoft Incorporated, 85 Richmond St. " W., Toronto, Ontario, M5H 2C9. Canada.Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Laboratoire de Géoressources (LGR)Centre de Recherches et des Technologies des Eaux (CERTE)SolimanTunisia
  2. 2.Faculty of Sciences of TunisUniversity Tunis El ManarTunisTunisia
  3. 3.DNOTunisTunisia

Personalised recommendations