Advanced interpretation of gravity data for determining the structural framework: case of Fkirine and Djebibina area (transition between central Tunisian Atlas and Sahel domain, North Africa)
- 8 Downloads
Abstract
The transitional zone between the Atlas Province and the Sahel domain has shown several structural complexities. In order to better understand the structural framework of this zone, a gravity study has been carried out based on a qualitative and quantitative interpretation of gravity data. This study area (Fkirine and Djebibina maps) has indicated that four major tectonic directions underlay the area. We denote NE-SW, NW-SE, E-W, and N-S fault directions. The E-W and N-S strike-slip faults have played a major role in the structuration of the Sahel domain. The depth of E-W faults exceeds 5 km, which explain their deep role in the area structuration. The major thrust front of Zaghouan has been shown as a discontinuous line, due to the change of the tectonic stress field from the Upper Miocene until the Plio-Quaternary. The change of the compression regime direction from NW-SE to N-S during the Plio-Quaternary induced a transtensional movement in Fkirine and Djebibina area that created new depressive structures as Draa Ben Jouder Graben. Applying the gravity method in this area has emerged several information, which are used to better understand the architecture of the region and the impact of faults in the geodynamic evolution.
Keywords
Gravity Qualitative and quantitative Structural Draa Ben Jouder Graben Atlas SahelNotes
Acknowledgements
The authors would like to extend their sincere appreciation to the Deanship of DNO Tunisia AS. We are very grateful to the OFFICE NATIONAL DES MINES (ONM) and ENTREPRISE TUNISIENNE D’ACTIVITES PETROLIERES (ETAP) for the scientific supports. We thank Mohamed Gharbi (Ass. Professor, CERTE) and Fares Khemiri (Senior Geologist, ETAP) for helpful discussions. The research was supported also by the GEORESSOURCES LABORATORY (LR15CERTE01), CENTRE DE RECHERCHES ET DES TECHNOLOGIES DES EAUX (CERTE, Tunisia).
References
- Agocs WB (1951) Least-squares residual anomaly determination. Geophysics 16:686–696. https://doi.org/10.1190/1.1437720 CrossRefGoogle Scholar
- Anderson JE (1996) The Neogene structural evolution of the western margin of the Pelagian Platform, central Tunisia. J Struct Geol 18(6):819–833. https://doi.org/10.1016/S0191-8141(96)80015-0 CrossRefGoogle Scholar
- Arfaoui A et al (2017) Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications. J Afr Earth Sci Elsevier BV 129:403–416. https://doi.org/10.1016/j.jafrearsci.2017.01.013 CrossRefGoogle Scholar
- Bahrouni N, Bouaziz S, Soumaya A, Ben Ayed N, Attafi K, Houla Y, el Ghali A, Rebai N (2014) Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach. J Seismol 18(2):235–256. https://doi.org/10.1007/s10950-013-9395-y CrossRefGoogle Scholar
- Bajanik S, Biely A, Lajmi T (1974) Enfidha-Ville, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°43, Notice Explicative de l’ONM. TunisGoogle Scholar
- Bédir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de décrochements de la marge atlasique de la Tunisie. Séismo-stratigraphie, Séismo-tectonique et implications pétrolières. Thèse de Doctorat d'Etat, Université de Tunis, p 420Google Scholar
- Bédir M et al (2001) Subsurface Mesozoic basins in the central Atlas of Tunisia: tectonics, sequence deposit distribution, and hydrocarbon potential. AAPG Bull 85(5):885–908Google Scholar
- Bédir M et al (2016a) New petroleum systems related to the structuring of Meso-Cenozoic basins in North African plate Tunisian margin. AAPG Annual Convention & Exhibition, Calagary, (Search and Discovery Article, 30459), p 2Google Scholar
- Bédir M et al (2016b) Seismic tectono-stratigraphy of fluvio-deltaic to deep marine Miocene silicoclastic hydrocarbon reservoir systems in the Gulf of Hammamet, northeastern Tunisia. Arab J Geosci 9(19). https://doi.org/10.1007/s12517-016-2745-7
- Belguith Y et al (2011) Tectonophysics Neogene extensional deformation and related stress regimes in central Tunisia. Tectonophysics Elsevier BV 509(3–4):198–207. https://doi.org/10.1016/j.tecto.2011.06.009 CrossRefGoogle Scholar
- Belguith Y et al (2013) Analogue modelling of Late Miocene-Early Quaternary continental crustal extension in the Tunisia-Sicily Channel area. Tectonophysics Elsevier BV 608:576–585. https://doi.org/10.1016/j.tecto.2013.08.023 CrossRefGoogle Scholar
- Ben Ayed N (1993) Évolution tectonique de l′avant pays de la chaîne alpine de Tunisie du début Mésozoïque à l′Actuel, Annales des Mines et de Géologie, Tunisie, Editions du Service géologique de Tunisie, 32, p. 286Google Scholar
- Ben Ferjani A, Burollet P, Mejri, F. (1990) Petroleum Geology of Tunisia, Entreprise Tunisienne des Activités Pétrolières (ETAP publication), p. 194Google Scholar
- Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University, New YorkCrossRefGoogle Scholar
- Blakely RJ, Simpson R (1986) Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51:1494–1498CrossRefGoogle Scholar
- Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the Northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357(1–4):227–253. https://doi.org/10.1016/S0040-1951(02)00370-0 CrossRefGoogle Scholar
- Boukadi N, Bédir M (1996) L’halocinèse en Tunisie : contexte tectonique et chronologique des évènements. C R Acad Sci Paris 322(7):587–594Google Scholar
- Bracène R, Frizon de Lamotte D (2002) The origin of intraplate deformation in the Atlas system of western and Central Algeria: from Jurassic rifting to Cenozoic-Quaternary inversion. Tectonophysics 357(1–4):207–226. https://doi.org/10.1016/S0040-1951(02)00369-4 CrossRefGoogle Scholar
- Buness H et al (1989) The EGT-85 seismic experiment in Tunisia—a reconnaissance of the deep structures. In Sixth Workshop on the European Geotraverse project, data compilations and synoptic interpretation, European Science Foundation, Strasbourg, pp. 197–210Google Scholar
- Buness H et al (1992) The EGT’85 seismic experiment in Tunisia: a reconnaissance of the deep structures. Tectonophysics 207:245–267CrossRefGoogle Scholar
- Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Min Geol (Tunis) 18:350Google Scholar
- Burollet PF (1981) The Pelagian Sea east of Tunisia: bioclastic deposition under temperate climate. Mar Geol 44(1–2):157–170. https://doi.org/10.1016/0025-3227(81)90116-X CrossRefGoogle Scholar
- Burollet PF, Mugniot JM, Sweeney P (1973) The geology of the Pelagian block: the margins and basins of southern Tunisia and Tripolotania. Compagnie Française des Pétroles, pp 331–359Google Scholar
- Burollet PF, Mugniot J, Sweeney P (1978) The geology of the Pelagian block: the margins and basins of southern Tunisia and Tripolitania. In: Nairn AEM, Kanes WH, Stehli FG (eds) The ocean basins and margins. Boston, Springer US, pp 331–359. https://doi.org/10.1007/978-1-4684-3039-4 CrossRefGoogle Scholar
- Caire A (1977) Interprétation tectonique unitaire de l’Atlas à fossés, C. R. Ac. Sciences, Paris, 284, 5, p 349–352Google Scholar
- Chihi L (1995) Les fossés Néogènes à Quaternaires de la Tunisie et de la Mer pélagienne : Leur étude structurale et leur signification dans le cadre géodynamique de la Méditerranée centrale. Thèse de Doctorat d'Etat, Faculté des Sciences de Tunis, Université Tunis II, p 325Google Scholar
- Dhahri F, Boukadi N (2007) Chevauchements différentiels et décrochements dans la chaîne atlasique de Tunisie : exemple des jebels Ousselet, Bou Dabbous et Bou Hajar. Compt Rendus Geosci 339(5):347–357. https://doi.org/10.1016/j.crte.2007.03.003 CrossRefGoogle Scholar
- Dhahri F, Boukadi N (2010) The evolution of pre-existing structures during the tectonic inversion process of the Atlas chain of Tunisia. J Afr Earth Sci Elsevier Ltd 56(4–5):139–149. https://doi.org/10.1016/j.jafrearsci.2009.07.002 CrossRefGoogle Scholar
- Dhahri F, Tanfous D, Gabtni H, Boukadi N (2015) Structural and geodynamic study in central Tunisia using field and geophysical data: new structural interpretation of the N-S axis and associated Atlassic structures. Int J Earth Sci 104(7):1819–1835. https://doi.org/10.1007/s00531-015-1159-1 CrossRefGoogle Scholar
- DNO Internal Report (2015) Petroleum evalutation of Fkirine permit, DNO Tunisia AS, 91pGoogle Scholar
- Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting. McGraw-Hill, New YorkGoogle Scholar
- EH-1 Well Report (1955) ETAP Report, Tunisia, p 12Google Scholar
- Ellouz N (1984) Étude de la subsidence de la Tunisie atlasique orientale et de la mer pélagienne. Thèse de Doctorat, Université Pierre et Marie Curie, Paris-6, p 129Google Scholar
- Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19(4):740–761CrossRefGoogle Scholar
- Frizon de Lamotte D et al (2009) Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics Elsevier BV 475(1):9–28. https://doi.org/10.1016/j.tecto.2008.10.024 CrossRefGoogle Scholar
- Frizon de Lamotte D, Raulin C, Mouchot N, Wrobel-Daveau JC, Blanpied C, Ringenbach JC (2011) The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: initial geometry and timing of the inversion processes. Tectonics 30(3):1–22. https://doi.org/10.1029/2010TC002691 CrossRefGoogle Scholar
- Gabtni H (2005) Gravity contribution for the study of the deep structures of the Tunisian Sahel domain (Kairouan–Sousse–Monastir area case). Compt Rendus Geosci 337(16):1409–1414. https://doi.org/10.1016/j.crte.2005.09.007 CrossRefGoogle Scholar
- Gabtni H, Jallouli C (2017) Regional-residual separation of potential field: an example from Tunisia. J Appl Geophys Elsevier BV 137:8–24. https://doi.org/10.1016/j.jappgeo.2016.12.011 CrossRefGoogle Scholar
- Gabtni H, Jallouli C, Mickus K (2012) Basement structure of southern Tunisia as determined from the analysis of gravity data: implications for petroleum exploration. Pet Geosci 18(2):143–152. https://doi.org/10.1144/1354-079311-050.1354-0793/12/ CrossRefGoogle Scholar
- Gharbi M et al (2014) Recent spatial and temporal changes in the stress regime along the southern Tunisian Atlas front and the Gulf of Gabes: new insights from fault kinematics analysis and seismic profiles. Tectonophysics Elsevier BV 626(1):120–136. https://doi.org/10.1016/j.tecto.2014.04.003 CrossRefGoogle Scholar
- Gharbi M, Espurt N, Masrouhi A, Bellier O, Amari EA (2015) Style of Atlassic tectonic deformation and geodynamic evolution of the southern Tethyan margin, Tunisia. Mar Pet Geol Elsevier Ltd 66:801–816. https://doi.org/10.1016/j.marpetgeo.2015.07.020 CrossRefGoogle Scholar
- Ghosh GK (2016) Interpretation of gravity data using 3D Euler deconvolution, tilt angle, horizontal tilt angle and source edge approximation of the north-west Himalaya. Acta Geophysica 64(4):1112–1138. https://doi.org/10.1515/acgeo-2016-0042 CrossRefGoogle Scholar
- Haller P (1983) Structure profonde du Sahel tunisien. Interprétation géodynamique. Thèse de Doctorat, Université de Besançon, p 163Google Scholar
- Hezzi I (2014) Caractérisation géophysique de la plateforme de Sahel, Tunisie Nord-orientale et ses conséquences géodynamiques. Thèse de Doctorat, Université Rennes1, 205p. Available at: https://ecm.univ-rennes1.fr/nuxeo/site/esupversions/e820dc01-eb74-411a-9971-19ea1f23aa0d
- Hlaiem A (1999) Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas. Tectonophysics 306(1):79–95. https://doi.org/10.1016/S0040-1951(99)00045-1 CrossRefGoogle Scholar
- Houatmia F, Khomsi S, Bédir M (2015) Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (northeastern Tunisia). J Afr Earth Sci Elsevier Ltd 111:434–450. https://doi.org/10.1016/j.jafrearsci.2015.08.019 CrossRefGoogle Scholar
- Hsu S-K., Sibuet J.C., Shyu C-T. (1996) High-resolution detection of geologic boundaries from potential-field anomalies: an enhanced analytic signal technique. Geophysics 61(2):373–386. https://doi.org/10.1190/1.1443966
- Jacobsen BH (1987) A case for upward continuation as a standard separation filter for potential-field maps. Geophysics 52(8):1138. https://doi.org/10.1190/1.1442378 CrossRefGoogle Scholar
- Jallouli C, Mickus K (2000) Regional gravity analysis of the crustal structure of Tunisia. J Afr Earth Sci 30(1):63–78. https://doi.org/10.1016/S0899-5362(00)00008-7 CrossRefGoogle Scholar
- Jauzein A (1967) Contribution à l’étude géologique des confins de la dorsale tunisienne (Tunisie Septentrionale). Ann Mines et Géol 22:475Google Scholar
- Khomsi S, Bédir M, Ben Jemia MG, Zouari H (2004) Mise en évidence d’un nouveau front de chevauchement dans l’Atlas tunisien oriental de Tunisie par sismique réflexion. Contexte structural régional et rôle du Trias salifère. Compt Rendus Geosci 336(15):1401–1408. https://doi.org/10.1016/j.crte.2004.06.007 CrossRefGoogle Scholar
- Khomsi S, Bédir M, Soussi M, Ben Jemia MG, Ben Ismail-Lattrache K (2006) Mise en évidence en subsurface d’événements compressifs Éocène moyen-supérieur en Tunisie orientale (Sahel): Généralité de la phase atlasique en Afrique du Nord. Compt Rendus Geosci 338(1–2):41–49. https://doi.org/10.1016/j.crte.2005.11.001 CrossRefGoogle Scholar
- Khomsi S et al (2009) An overview of the Late Cretaceous–Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian Atlas: structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics Elsevier BV 475(1):38–58. https://doi.org/10.1016/j.tecto.2009.02.027 CrossRefGoogle Scholar
- Khomsi S, de Lamotte DF, Bédir M, Echihi O (2016) The Late Eocene and Late Miocene fronts of the Atlas Belt in eastern Maghreb: integration in the geodynamic evolution of the Mediterranean domain. Arab J Geosci 9(15). https://doi.org/10.1007/s12517-016-2609-1
- Kjelkenes FS (2015) Structural analysis of the Jebel Fadeloun anticline, Tunisia: impact of fractures and faults on the petrophysical properties of carbonate rocks. Master Thesis, University of Bergen, p 90Google Scholar
- Klett TR (2001) Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta—the Bou Dabbous–Tertiary and Jurassic-Cretaceous composite, USGS bulletin, (2202–D), p. 149. Available at: http://pubs.usgs.gov/bul/b2202-d/
- Laaridhi Ouazaa N (1994) Etude minéralogique et géochimique des épisodes magmatiques mésozoïques et miocènes de la Tunisie, Thèse Doctorat Es Sciences, Univ. Tunis, 426pGoogle Scholar
- Meddeb S (1986) Sédimentation et tectonique polyphasée dans les dômes d’Enfida (Sahel Tunisien), Thèse de Doctorat, Univ. Paris-Sud, Osay, p 160 Google Scholar
- Mencik E, Stranik Z, Salaj, J (1978) Jebel Fkirine, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°42, Notice Explicative de l’ONM. TunisGoogle Scholar
- Midassi MS (1982) Regional gravity of Tunisia. Master Thesis, University of South Carolina, Columbia, p 125Google Scholar
- Miller HG, Singh V (1994) Potential field tilt—a new concept for location of potential field sources. J Appl Geophys 32(2–3):213–217. https://doi.org/10.1016/0926-9851(94)90022-1 CrossRefGoogle Scholar
- Morgan M, Grocott J, Moody RT (1998) The structural evolution of the Zaghouan-Ressas Belt, northern Tunisia. Geol Soc Lond Spec Publ 132:405–422CrossRefGoogle Scholar
- Piqué A et al (2002) The Mesozoic-Cenozoic Atlas belt (North Africa): an overview. Geodin Acta 15(3):185–208. https://doi.org/10.1016/S0985-3111(02)01088-4 CrossRefGoogle Scholar
- Rabhi M (1999) Contribution à l’étude stratigraphique et analyse de l’évolution géodynamique de l’axe Nord-Sud et des structures avoisinantes (Tunisie centrale). Thèse de Doctorat, Faculté des Sciences de Tunis, Université de Tunis II, p 206Google Scholar
- Rabhi M, Maamri R (2003) Sidi Bou Ali, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°49, Notice Explicative de l’ONM. TunisGoogle Scholar
- Simpson SM (1954) Least-squares polynomial fitting to gravitational data and density plotting by digital computer. Geophysics 19:808–811CrossRefGoogle Scholar
- SNJ-1 Well Report (1994) ETAP Report, ETAP Tunisia, p 31Google Scholar
- Souei A, Atawa M, Zouaghi T (2018) Hydrogeological framework and geometry modeling via joint gravity and borehole parameters, the Nadhour-Sisseb-El Alem basin (central-eastern Tunisia). J Afr Earth Sci Elsevier BV 139:76. https://doi.org/10.1016/j.jafrearsci.2017.12.006 CrossRefGoogle Scholar
- Soumaya A, Ben Ayed N, Delvaux D, Ghanmi M (2015) Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: geodynamic implications for central Mediterranean. Tectonics 34(6):1154–1180. https://doi.org/10.1002/2015TC003895 CrossRefGoogle Scholar
- Soumaya A et al (2016) Seismotectonics and seismic hazard map of Tunisia, Geophysical Research Abstracts_EGU General Assembly, 18(EGU2016), p. 8266Google Scholar
- Soussi M (2002) Le Jurassique de la tunisie Atlasique. Stratigraphie, Dynamique sédimentaire, Paléogéographie et Intérêt pétrolier. Thèse de Doctorat d'Etat, Université de Claude Bernard-Lyon 1, p 661Google Scholar
- Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. GEOPHYSICS 35(2):293–302. https://doi.org/10.1190/1.1440092 CrossRefGoogle Scholar
- Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31–37. https://doi.org/10.1190/1.1441278 CrossRefGoogle Scholar
- Touati M (1985) Étude géologique et géophysique de la concession Sidi El Itayem en Tunisie orientale, Sahel de Sfax. Thèse de Doctorat, Université Pierre-et-Marie-Curie, Paris-6, p 255Google Scholar
- Turki MM (1980) La « faille de Zaghouan » est la résultante de structures superposées (Atlas tunisien central), Société géologique de France, 7, pp. 321–325Google Scholar
- Turki MM (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. Thèse de Doctorat d'Etat, Faculté des sciences de Tunis, p 252Google Scholar
- Turki MM (1988) Polycinématique et contrôle sédimentaire associés sur la cicatrice Zaghouan-Nabhana. Centre des Sciences de la Terre, Institut National de Recherche Scientifique, Tunisie. Revue des Sciences de la Terre (7)Google Scholar
- Turki MM, Saadi M, Zaghbib-Turkib D (2002) Djebibina, Carte Géologique de la Tunisie, Echelle: 1/50000, Feuille N°48, Notice explicative de l’ONM. TunisGoogle Scholar
- Vedova BD, Lucazeau F, Pasquale V, Pellis G, Verdoya M (1995) Heat flow in the tectonic provinces crossed by the southern segment of the European Geotraverse. Tectonophysics 244(1–3):57–74. https://doi.org/10.1016/0040-1951(94)00217-W CrossRefGoogle Scholar
- Whitehead N, Musselman C (2008) montaj Grav/Mag Interpretation: processing, analysis and visualization system for 3D inversion of potential field data for oasis montaj v6. 3, Geosoft Incorporated, 85 Richmond St. " W., Toronto, Ontario, M5H 2C9. Canada.Google Scholar