Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): contribution of Landsat-8 data

  • Baya Nait AmaraEmail author
  • Djamal Eddine Aissa
  • Saïd Maouche
  • Massinissa Braham
  • Djamel Machane
  • Nabila Guessoum
Original Paper


In this work, we use remote sensing tools to recognize and map outcrops of altered hydrothermal rock zones in the Guelma basin (Northeastern Algeria). This basin is characterized by many thermal springs which could be the origin of the hydrothermal alterations and the source of polymetallic mineralization of Zn, Sb, Pb, and As. Structural lineaments representing faults or faulted zones were successfully extracted using remote sensing processing. The superimposition of the known mineralization site map with the evidenced lineaments and hydrothermal alteration zones evidences that the zones of high fractures density and of great structural complexity are in agreement with the detected hydrothermal alterations zones.


Remote sensing (Landsat-8 data) Alteration mapping Mineralization Lineament Guelma basin 



The authors would like to express their thanks and gratitude to the editors and anonymous reviewers for their constructive comments that helped in improving this paper. Sincere thanks are due to Said Benzineh Professor in Department of Geography and Spatial Planning, USTHB, for constructive critical and fruitful discussions.

Funding information

This work is supported by the FSTGAT/USTHB (University of Science and Technology Houari Boumediene Bab Ezzouar) Algiers, Algeria and CGS (National Center of Applied Research in Earthquake Engineering).


  1. Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in southern Arizona. Econ Geol 78(4):591–604. CrossRefGoogle Scholar
  2. Agar B, Coulter D (2007) Remote sensing for mineral exploration—a decade perspective 1997–2007. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on mineral Exploration, p 109–136Google Scholar
  3. Aissa DE, Marignac C, Boutaleb A (2000) A metallogenesis of the Alpian oblique collision belt in North Eastern Algeria. J Afr Earth Sci Sp Abstract Issue 30, Nb 4AGoogle Scholar
  4. Aissa DE, Boutaleb A, Kolli O (2010) Orogenesis and Mineral Resources in Algeria—Premier Colloque International sur la Géologie et les Ressources Minérales du Sahara Algérien Université Kasdi Merbah–Ouargla—5–7 Dec. 2010Google Scholar
  5. Ali ASO, Pour AB (2014) Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in Ariab mining district, Red Sea Hills, Sudan. Int J Basic Appl Sci 3(3):199–208. CrossRefGoogle Scholar
  6. Assassi F (2006) Reconstruction of fluids temperatures of karstic mineralization of kaolin of westhern of Djebel Debbagh (Guelma, Northeasthern of Algeria), PhD Thesis, University Badji-Mokhtar, Annaba, Algeria. pp 161Google Scholar
  7. Azizi H, Rsaouli AA, Babaei K (2007) Using SWIR bands from ASTER for discrimination of hydrothermal altered minerals in the Northwest of Iran (SE-Sanandaj City): a key for exploration of copper and gold mineralisation. Res J Appl Sci 2(96):763–768Google Scholar
  8. Bouillin JP (1979) La transversale de Collo et d’El Milia (Petite Kabylie): une région-clef pour l’interprétation de la tectonique alpine de la chaîne littorale d’Algérie. Mém Soc Géol Fr NS 135:1–84Google Scholar
  9. Chouabbi A (1987) Étude géologique de la région de Hammam N’Baïls (SE de Guelma, Constantinois, Algérie): un secteur des zones externes de la chaîne des Maghrébides, thèse de 3 cycle, université Toulouse-3, 123pGoogle Scholar
  10. Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, Gent CA (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res Planets 108(E12)Google Scholar
  11. Coiffait PE (1992) Un bassin post-nappes dans son cadre structural, l’exemple du bassin de Constantine (Algérie Nord Orientale). Doctorate thesis, Nancy I University, France. 405pGoogle Scholar
  12. Cudahy T, Jones M, Thomas M, Laukamp C, Caccetta M, Hewson R, Verrall M (2008) Next generation mineral mapping: Queensland airborne HyMap and satellite ASTER surveys 2006–2008. Perth, Publicly available report: P2007/364, 152Google Scholar
  13. Da Cunha Frutuoso RM (2015) Mapping hydrothermal gold mineralization using Landsat 8 data. A case of study in Chaves license, PortugalGoogle Scholar
  14. Dareste de la Chavanne J (1909) Carte détaillée de l’Algérie au 1:50 000, feuille n° 76, La Mahouna. Publ. Serv. Carte géol. Algérie, FranceGoogle Scholar
  15. Dareste de la Chavanne J (1910) Guelma region. Special study of tertiary deposits, PhD thesis. University of Lyon, Publ. Serv. Géol. Carte., Algeria, vol., pp. 50, 20 fig, 5 plGoogle Scholar
  16. Deleau P (1938) Etude géologique des régions de Jemmaps, Hammam Maskoutine et du col des oliviers. Thèse, Bulletin: Service de la Carte Géologique de l’Algérie 2(8):583Google Scholar
  17. Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32(1–2):275–290. CrossRefGoogle Scholar
  18. Ducart DF, Silva AM, Toledo CLB, Assis LMD (2016) Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Braz J Geol 46(3):331–349CrossRefGoogle Scholar
  19. Eisele A, Lau I, Hewson R, Carter D, Wheaton B, Ong C, Kaufmann H (2012) Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sens 4(11):3265–3286. CrossRefGoogle Scholar
  20. Eldosouky AM, Abdelkareem M, Elkhateeb SO (2017) Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. J Afr Earth Sci 130:28–37. CrossRefGoogle Scholar
  21. ENVI Tutorial (2013) Exelis visual information solutions. Boulder, ColoradoGoogle Scholar
  22. Fekraoui A, Abouriche A (1999) Ressources Géothermiques du Nord de l’Algérie-Eléments de l’Atlas Géothermique. Rev Energ Renouv:159–162Google Scholar
  23. Gawad AEA, Donia AMA, Elsaid M (2016) Processing of Landsat 8 imagery and ground gamma-ray spectrometry for geologic mapping and dose-rate assessment, Wadi Diit along the Red Sea coast, Egypt. Open J Geol 6(08):911–930. CrossRefGoogle Scholar
  24. Glaçon J (1967) Recherches sur la géologie et les gîtes métallifères du Tell sétifien (Algérie). 2 vol., 750 p., 372 fig., 48 pl., 8 déplGoogle Scholar
  25. Goetz AF, Rowan LC (1981) Geologic remote sensing. Science 211(4484):781–791CrossRefGoogle Scholar
  26. Goetz AF, Billingsley FC, Gillespie AR, Abrams MJ, Squires RL, Shoemaker EM, Elston DP (1975) Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern ArizonaGoogle Scholar
  27. Green AA, Berman M, Switzer P, Craig MD (1988) Transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74. CrossRefGoogle Scholar
  28. Gupta RP (2003) Remote sensing geology. SpringerGoogle Scholar
  29. Gupta RP (2017) Remote sensing geology. SpringerGoogle Scholar
  30. Han T, Nelson J (2015) Mapping hydrothermally altered rocks with Landsat-8 imagery: a case study in the KSM and Snowfield zones, northwestern British Columbia. British Columbia Geological Survey PaperGoogle Scholar
  31. Issaadi A (1992) Le thermalisme dans son cadre géostructural, apports à la connaissance de la structure profonde de l’Algérie et de ses ressources géothermales. Thèse de Doctorat d’Etat, University of Science and Technology Houari Boumediene, AlgiersGoogle Scholar
  32. Jensen JR (2005) Thematic map accuracy assessment. Introductory digital image processing: a remote sensing perspective, p 476–482Google Scholar
  33. Lahondère JC (1987) Les séries ultratelliennes d’Algérie nord-orientale et les formations environnantes dans leur cadre structural. . PhD Thesis, Paul Sabatier University of Toulouse, France, (242p)Google Scholar
  34. Landsat, USGS (2016) 8 (L8) Data users handbook version 2.0. EROS, Sioux Falls, South DakotaGoogle Scholar
  35. Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57(9):1163–1169Google Scholar
  36. Maouche S, Abtout A, Merabet NE, Aïfa T, Lamali A, Bouyahiaoui B, Bougchiche S, Ayache M (2013) Tectonic and hydrothermal activities in Debagh, Guelma Basin (Algeria). J Geol Res 2013:1–13. CrossRefGoogle Scholar
  37. Map of mineral deposits—Constantine Nord au 500 000 (1987) Publ. Office National de la Géologie d’AlgérieGoogle Scholar
  38. Meghraoui (1988) Géologie des zones sismiques du Nord de l’Algérie: Paléosismologie, tectonique active et synthèse sismotectonique. PhD Thesis, University of Orsay, Paris sud. 356ppGoogle Scholar
  39. Mia B, Fujimitsu Y (2012) Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. J Earth Syst Sci 121(4):1049–1057CrossRefGoogle Scholar
  40. Mwaniki MW, Moeller MS, Schellmann G (2015) A comparison of Landsat-8 (OLI) and Landsat-7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XL 7/W3:897–903CrossRefGoogle Scholar
  41. Ninomiya Y (2003) A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International, vol. 3, pp 1552–1554. IEEEGoogle Scholar
  42. O’leary DW, Friedman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new standards for old terms. Geol Soc Am Bull 87(10):1463–1469CrossRefGoogle Scholar
  43. Popov A (1968) Les types morphologiques et la répartition des gisements de zinc et de plomb en Algérie. Ann Min Geol Tunis 23:103–203Google Scholar
  44. Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42(6):1309–1323. CrossRefGoogle Scholar
  45. Pour A, Hashim M (2015) Hydrothermal alteration mapping from Landsat-8 data, Sar Chesmeh copper mining district, south-eastern Islamic Republic of Iran. J Taibah Univ Sci 9:155–166CrossRefGoogle Scholar
  46. Raoult JF (1974) Géologie du centre de la chaîne nummidique (nord du constantinois, Algérie), PhD thesis, 156 pp, Paris, FranceGoogle Scholar
  47. Rockwell BW (2013) Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado. US Geological Survey Scientific Investigations Map, 3252Google Scholar
  48. Rockwell BW, Hofstra AH (2008) Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1):218–246CrossRefGoogle Scholar
  49. Rowan LC, Wetlaufer PH (1975) Iron-absorption band analysis for the discrimination of iron-rich zones. U.S. Geol. Surv. Type III final report, Contract S-70243-AGGoogle Scholar
  50. Rowan LC, Goetz AFH, Ashley RP (1977) Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics 42(3):522–535CrossRefGoogle Scholar
  51. Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14(3–4):157–183CrossRefGoogle Scholar
  52. Talbi A (1987) Karstic mineralization study of Djebel Debbagh occidental (Guelma), Magister thesis, University Houari Boumediene, Algiers, Algeria, pp. 157Google Scholar
  53. Torres-Vera MA, Prol-Ledesma RM (2003) Spectral enhancement of selected pixels in thematic mapper images of the Guanajuato district (Mexico) to identify hydrothermally altered rocks. Int J Remote Sens 24(22):4357–4373CrossRefGoogle Scholar
  54. Toubal A (1984) Contribution à l’étude des Minéralisations Antimonifères du NE Algérien (Doctoral dissertation, Thèse 3ème Cycle, Université de Paris VI, France)Google Scholar
  55. Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14(1):112–128CrossRefGoogle Scholar
  56. Vila JM (1980) La chaine alpine d’Algérie orientale et des confins Algéro-tunisiens PhD thesis 671p Pierre et Marie Curie, Paris.
  57. Vincent RK (1997) Fundamentals of geological and environmental remote sensing, vol 366. Prentice Hall, Upper Saddle RiverGoogle Scholar
  58. Xie Y, Li L, Wang B, Li G, Liu H, Li Y, Zhou J (2017) Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: evidence for a magmatic link. Ore Geol Rev 80:891–909. CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  • Baya Nait Amara
    • 1
    • 2
    • 3
    Email author
  • Djamal Eddine Aissa
    • 1
    • 2
  • Saïd Maouche
    • 4
  • Massinissa Braham
    • 1
    • 3
  • Djamel Machane
    • 3
  • Nabila Guessoum
    • 1
    • 2
    • 3
  1. 1.Faculty of Earth Sciences, Geography and Spatial Planning (FSTGAT)University of Science and Technology, Houari Boumedienne (USTHB)AlgiersAlgeria
  2. 2.Laboratory of Metallogeny and Magmatism of AlgeriaFSTGAT-USTHBAlgiersAlgeria
  3. 3.National Center of Applied Research in Earthquake Engineering (CGS)AlgiersAlgeria
  4. 4.Center of Research in Astronomy, Astrophysics, and Geophysics (CRAAG)AlgiersAlgeria

Personalised recommendations