Evaluation of nine USGS reference materials for quality control through Univariate Data Analysis System, UDASys3

  • Mauricio Rosales-RiveraEmail author
  • Lorena Díaz-GonzálezEmail author
  • Surendra P. Verma
Original Paper


Data quality in any science plays a fundamental role to achieve valid inferences from experimental data. Inter-laboratory geochemical data for nine geochemical reference materials (GRMs) issued from the United States Geological Survey (USGS) were compiled from numerous literature sources. These data were processed in the third version of UDASYS (UDASys3; Univariate Data Analysis System), which applies automatically a refined statistical procedure to obtain both central tendency and dispersion parameters for univariate statistical data arrays and generates brief as well as extended reports. We present improved working values for central tendency and dispersion (total uncertainty) parameters for 10 major elements (SiO2 to P2O5), 14 rare earth elements (REE; La to Lu), and 42 (B to Zr; Ac to W) trace elements, along with LOI, CO2, H2O+, Cl, F, and S for these GRMs. Because the total uncertainty values of the mean reported in this work are generally lower than the literature uncertainties, the present statistical values are superior to those reported in all previous compilations. This implies that our statistical information will be more useful for instrumental calibration and quality control. An example is presented of the instrumental X-ray florescence spectrometric calibration, in which both sets of GRM concentrations and their 99% uncertainties (literature as well as those obtained from UDASys3) were used for the calibration of 10 major elements. The results show that UDASys3 provided generally more reliable calibration regression equations (higher linear correlation coefficient and lesser uncertainty in intercept and slope values) than the literature concentration estimates.


Geochemistry Mean composition Total uncertainty Confidence levels Significance tests Recursive discordancy tests 



Mauricio Rosales-Rivera thanks Conacyt for the doctoral fellowship. We are also highly grateful to the editor Abdullah M. Al-Amri and the reviewer C. Gokceoglu as well as anonymous reviewers; their constructive comments helped us improve our presentation.

Funding information

This work was partly supported by the DGAPA-PAPIIT grant IN100816.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12517_2018_4220_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2.44 mb)
12517_2018_4220_MOESM2_ESM.xlsx (92 kb)
ESM 2 (XLSX 91.7 kb)
12517_2018_4220_MOESM3_ESM.xlsx (128 kb)
ESM 3 (XLSX 128 kb)
12517_2018_4220_MOESM4_ESM.xlsx (25 kb)
ESM 4 (XLSX 25 kb)


  1. Almirudis E, Santoyo-Gutiérrez ER, Guevara M, Paz-Moreno F, Portugal E (2018) Chemical and isotopic signatures of hot springs from east-central Sonora State, Mexico: a new prospection survey of promissory low-to-medium temperature geothermal systems. Revista Mexicana de Ciencias Geológicas 35(2):116–141CrossRefGoogle Scholar
  2. Armstrong-Altrin JS, Nagarajan R, Lee YI, Zubillaga JJK, Saldaña LPC (2014) Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implications for provenance and tectonic setting. Turk J Earth Sci 23(5):533–558CrossRefGoogle Scholar
  3. Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015) Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Cont Shelf Res 95(2015):15–26CrossRefGoogle Scholar
  4. Barnett, V., and Lewis, T. (1994) Outliers in statistical data. John Wiley & Sons 584Google Scholar
  5. Chirumbolo S, Bjørklund G (2016) Commentary: Arnica Montana effects on gene expression in a human macrophage cell line: evaluation by quantitative real-time PCR. Front Immunol 7:280Google Scholar
  6. Gladney ES, Roelandts I (1988a) 1987 compilation of elemental concentration data for USGS BIR-1, DNC-1 and W-2. Geostand Newslett 12(1):63–118CrossRefGoogle Scholar
  7. Gladney ES, Roelandts I (1988b) 1987 compilation of elemental concentration data for USGS BHVO-1, MAG-1, QLO-1, RGM-1, SCo-1, SDC-1, SGR-1, and STM-1. Geostand Newslett 12(2):253–262CrossRefGoogle Scholar
  8. Gladney ES, Jones EA, Nickell EJ, Roelandts I (1991) 1988 compilation of elemental concentration data for USGS DTS-1, G-1, PCC-1, and W-1. Geostand Newslett 15(2):199–396CrossRefGoogle Scholar
  9. Gladney ES, Jones EA, Nickell EJ, Roelandts I (1992) 1988 compilation of elemental concentration data for USGS AGV-1, GSP-1 and G-2. Geostand Newslett 16(2):111–300CrossRefGoogle Scholar
  10. Govindaraju K (1989) 1989 compilation of working values and sample description for 272 geostandards. Geostand Newslett 13(Special Issue):1–114CrossRefGoogle Scholar
  11. Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newslett 18(Special Issue):1–158CrossRefGoogle Scholar
  12. Govindaraju K (1995) Update (1984-1995) on two GIT-IWG geochemical reference samples: albite from Italy, AL-I and iron formation sample from Greenland, IF-G. Geostand Newslett 19(1):55–96CrossRefGoogle Scholar
  13. Guevara M, Verma SP, Velasco-Tapia F, Lozano-Santa Cruz R, Girón P (2005) Comparison of linear regression models for quantitative geochemical analysis: an example using x-ray fluorescence spectrometry. Geostand Geoanal Res 29(3):271–284CrossRefGoogle Scholar
  14. Hayes K, Kinsella A, Coffey N (2007) A note on the use of outlier criteria in Ontario laboratory quality control schemes. Clin Biochem 40(3–4):147–152CrossRefGoogle Scholar
  15. Irles C, Nava-Kopp AT, Morán J, Zhang L (2014) Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus. Stress 17(3):275–284CrossRefGoogle Scholar
  16. Jensen JL, Lake LW, Corbett PWM, and Goggin DJ (1997) Statistics for petroleum engineers and geoscientists. Prentice-Hall, 390Google Scholar
  17. Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253(1–2):50–53CrossRefGoogle Scholar
  18. Jochum KP, Weis U, Schwager B, Stoll B, Wilson SA, Haug GH, Andreae MO, Enzweiler H (2016) Reference values following ISO guidelines for frequently requested rock reference materials. Geostand Geoanal Res 40(3):333–350CrossRefGoogle Scholar
  19. Kalantar AH (1990) Weighted least squares evaluation of slope from data having errors in both axes. Trends Anal Chem 9(5):149–151CrossRefGoogle Scholar
  20. Madhavaraju J, Löser H, Lee YI, Santacruz RL, Pi-Puig T (2016) Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, Mexico: implications for REE source and paleo-redox conditions. J S Am Earth Sci 66:149–165CrossRefGoogle Scholar
  21. Maronna RA, Zamer RH (2002) Robust estimates of location and dispersion for high-dimensional datasets. Technometrics 44(4):307–317CrossRefGoogle Scholar
  22. Maronna RA, Martin RD, Yohai VJ, & Salibián-Barrera M (2018). Robust statistics: theory and methods (with R). Wiley, 464Google Scholar
  23. Miller JN, and Miller JC (2010) Statistics and chemometrics for analytical chemistry. Pearson Prentice Hall, 271Google Scholar
  24. Ran B, Tan H, Feng J, Liu Y, Wang W (2015) Traffic speed data imputation method based on tensor completion. Comp Intell and Neurosci 2015(364089):1–9Google Scholar
  25. Rosales-Rivera M, Díaz-González L, Verma SP (2018) A new online computer program (BIDASys) for ordinary and uncertainty weighted least-squares linear regressions: case studies from food chemistry. Revista Mexicana de Ingeniería Química 17(2):507–522CrossRefGoogle Scholar
  26. Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283CrossRefGoogle Scholar
  27. Tellinghuisen J (2007) Weighted least-squares in calibration: what difference does it make? Analyst 132(6):536–543CrossRefGoogle Scholar
  28. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, Massachusetts, Vol 2, 704Google Scholar
  29. Velasco-Tapia F (2014) Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt). Sci World J 2014(793236):1–32CrossRefGoogle Scholar
  30. Velasco-Tapia F, Guevara M, Verma SP (2001) Evaluation of concentration data in geochemical reference materials. Chem Erde 61(2):69–91Google Scholar
  31. Verma SP, Cruz-Huicochea R, Díaz-González L (2013) Univariate data analysis system: deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. Int Geol Rev 55(15):1922–1940CrossRefGoogle Scholar
  32. Verma SP, Díaz-González L, Pérez-Garza JA, Rosales-Rivera M (2016) Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arab J Geosci 9(740):1–14Google Scholar
  33. Verma SP, Díaz-González L, Pérez-Garza JA, Rosales-Rivera M (2017a) Erratum to: Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material. Arab J Geosci 10(24):1–3Google Scholar
  34. Verma SP, Rosales-Rivera M, Díaz-González L, Quiroz-Ruíz A (2017b) Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests. Turk J Earth Sci 26(5):331–353CrossRefGoogle Scholar
  35. Verma SP, Verma SK, Rivera-Gómez MA, Torres-Sánchez D, Díaz-González L, Amezcua-Valdez A, Rivera-Escoto BA, Rosales-Rivera M, Armstrong-Altrin JS, López-Loera H, Velasco-Tapia F, Pandarinath K (2018) Statistically coherent calibration of X-ray fluorescence spectrometry for major elements in rocks and minerals. J Spectros 2018(1):1–13CrossRefGoogle Scholar
  36. Yildiz A, Kibici Y, Bağci M, Dumlupunar İ, Kocabaş C, Aritan AE (2015) Petrogenesis of the post-collisional Eocene volcanic rocks from the Central Sakarya Zone (Northwestern Anatolia, Turkey): implications for source characteristics, magma evolution, and tectonic setting. Arab J Geosci 8(12):11239–11260CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Doctorado en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma de Estado de MorelosCuernavacaMexico
  2. 2.Departamento de Computación, Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma de Estado de MorelosCuernavacaMexico
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations