Assessment of tailings stability and soil contamination of Kef Ettout (NW Tunisia) abandoned mine

  • Nawrez Sliti
  • Charef AbdelkrimEmail author
  • Lamia Ayed
Original Paper


The abandoned mining wastes still represent one of the significant environmental hazards. Kef Ettout tailings is one example that was exposed to severe ambient conditions and must be assessed to determine its potential risks. The initial mine wastes, the tailings, and agricultural soils were investigated. The results showed that the winds and runoff water distributed the potentially toxic metals and the alkaline pH of tailings and soils, the carbonate, and TOC content controlled the metal bioavailability. About 22% of Pb and 70 and 98% of Zn and Cd, respectively, were leached from tailings. Despite the initial wastes were richer in Zn (1.5 times) than in Pb, the tailings kept much more Pb (1.6 times) than Zn. In agricultural soils, the mean concentrations of Pb, Zn, and Cd were 69, 141, and 1.8 mg kg−1, respectively. The enrichment factor and geoaccumulation index showed that more than 75% of soils were considered strongly contaminated. Speciation results indicated that about 97% of initial wastes metals were bounded to residual fractions. However, in tailings, 9–30, 4–10, and < 6% of Pb, Zn, and Cd, respectively, were in stable forms. Redistribution index (Utf) and relative binding intensity (IR) of metal tailing had confirmed that the tailings continued to provide more Zn quantity than Pb and Cd. In soils, the highest percentages of Pb and Zn were closely associated with organic matter, the Cd was significantly bounded to the exchangeable fraction, and the mean decreasing factor mobility order was Cd (66) < Pb (73) < Zn (78). Therefore, this tailings type must be rehabilitated to limit its risks, particularly of Zn.


Tailings Soil Potentially toxic metals Metal mobility factor Metal distribution index Metal binding intensity index 



The constructive and thorough reviews of anonymous reviewers are warmly acknowledged. Additionally, we would like to thank Pr. Simon Sheppared for the English language revision.


  1. Abdallah S, Al-Hobaib KQ, Al-Jaseem HMBA, Ahmed HA (2012) Environmental impact assessment inside and around Mahd Adh Dhahab gold mine, Saudi Arabia. Arab J Geosci 5:985–997Google Scholar
  2. AFNOR, (1979) France (norms AFNOR,
  3. Agnieszka S, Wieslaw Z (2002) Application of sequential extraction and the ICPAES method for study of the partitioning of metals in fly ashes. Microchem J 72:9–16Google Scholar
  4. Alekseenko VA, Pashkevich MA, Alekseenko AV (2017) Metallisation and environmental management of mining site soils. J Geochem Explor 174:121–127Google Scholar
  5. Alexander CR, Smith RG, Calder FD, Schropp SJ, Windom HL (1993) The historical record of metal enrichments in two Florida estuaries. Estuaries 16:627–637Google Scholar
  6. Baize D (1997) Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d’interprétation. INRA Éditions, Paris, p 410Google Scholar
  7. Banin A, Gerstl Z, Fine PN, Metsger Z, Newzella D (1990) Minimizing soil contamination through control of sludge transformations in soil, Joint German-Israel Research. Projects Report No Wt 8678/458Google Scholar
  8. Batik P (1980) Carte géologique de la Tunisie; feuille n°11: Hédil. Service Géologique, Office National des MinesGoogle Scholar
  9. Bergaya E, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12:275–280Google Scholar
  10. Bian Z, Miao X, Lei S, Chen S, Wang W, Struthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337:702–703Google Scholar
  11. Blanchard C (2000) Caractérisation de la mobilisation potentielle des polluants inorganiques dans les sols pollués. Thèse spécialité: Science et technique du déchet Ecole doctorale de chimie de Lyon France, 241pGoogle Scholar
  12. Bodar CW, Pronk ME, Sijm DT (2006) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Asses 1(4):301–319Google Scholar
  13. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Review remediation of heavy metal(loid)s contaminated soils: to mobilize or to immobilize? J Hazard Mater 266:141–166Google Scholar
  14. Bosmans H, Paenhuys J (1980) The distribution of heavy metals in the soils of the Kempen. Pédologie 15:191–223Google Scholar
  15. Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, LondonGoogle Scholar
  16. Buccolieri A, Buccolieri G, Dell’Atti A, Strisciullo G, Gagliano-Candela R (2010) Monitoring of total and bioavailable heavy metals concentration in agricultural soils. Environ Monit Assess 168:547–560Google Scholar
  17. Camden-Smith BPC, Tutu H (2014) Geochemical modelling of the evolution and fate of metal pollutants arising from an abandoned gold mine tailings facility in Johannesburg. Water Sci Technol 69(5):1108–1114Google Scholar
  18. Canadian Council of Ministers of the Environment (1991) Canadian water quality guidelines for the protection of aquatic life: guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives. In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  19. Chai Y, Guo J, Chai S, Cai J, Xue L, Zhang Q (2015) Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere 134:67–75Google Scholar
  20. Charef A, Sheppard SMF (1991) The diapir related Bou Grine Pb–Zn deposit (Tunisia): evidence for role of hot sedimentary basin brines. In: Pagel M, Leroy J (eds) Source, transport and deposition of metals. Balkema, Rotterdam, pp 269–272Google Scholar
  21. Chotpantarat S, Chunhacherdchai L, Wikiniyadhanee R, Tongcumpou C (2015) Effects of humic acid amendment on the mobility of heavy metals (Co, Cu, Cr, Mn, Ni, Pb, and Zn) in gold mine tailings in Thailand. Arab J Geosci 8:7589–7600Google Scholar
  22. D.G.R.E (2000) Annuaire de l’exploitation des nappes. Rapport D.G.R.E, Tunis 282pGoogle Scholar
  23. Daldoul G, Souissi R, Souissi F, Jemmali N, Chakroun HK (2015) Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. J Afr Earth Sci 110:150–159Google Scholar
  24. Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118:419–426Google Scholar
  25. Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (1998) A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta 363:45–55Google Scholar
  26. Deneux-Mustin S, Roussel-Debet S, Mustin C, Henner P, Munier-Lamy C, Colle C, Berthelin J, Garnier-Laplace J, Leyval C (2003) Mobilité et transfert racinaire des éléments traces : influence des micro-organismes du sol. Pref Elisabeth Leclerc-Cessac Paris, Tec et DocGoogle Scholar
  27. Escarre J, Lefebvre C, Raboyeau S, Dossantos A, Gruber W, Cleyet Marel JC, Frerot H, Noret N, Mahieu S, Collin C, Van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water Air Soil Poll 216:485–504Google Scholar
  28. Esshaimi M, Ouazzani N, El Gharmali A, Berrkhis F, Valiente M, Mandi L (2013) Speciation of heavy metals in the soil and the tailings, in the zinc-lead Sidi Bou Othmane abandoned mine. Environ Earth Sci 3(8):138–147Google Scholar
  29. Ettler V, Mihaljevic M, Kribek B, Majer V, Sebek O (2011) Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164:73–84Google Scholar
  30. Fang ZQ (2016) Pollution Characteristics of Heavy Metal in Soil from Lead and Zinc mine and its Stabilization Study. China University of Mining & Technology, BeijingGoogle Scholar
  31. Fiedler HD, Lopez-Sanchez JF, Rubio R, Rauret G, Quevauviller PH, Ure AM, Muntau H (1994) Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst 119:1109–1114Google Scholar
  32. Fijałkowski K, Kacprzak M, Grobelak A, Placek A (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. Inż Och Środ 15:81–92Google Scholar
  33. Gworek B, Barański A, Czarnowski K, Sienkiewicz J, Porębska G (2000) Risk assessment in contaminated land management. Rocz Gleboznawcze 3:101–110Google Scholar
  34. Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperatures. J Environ Qual 3:180–183Google Scholar
  35. Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001Google Scholar
  36. Halim MA, Majumder RK, Zaman MN, Hossain S, Rasul MG, Sasak K (2013) Mobility and impact of trace metals in Barapukuria coal mining area, Northwest Bangladesh. Arab J Geosci 6(12):4593–4605Google Scholar
  37. He ZL, Yanga XE, Stoffellab PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140Google Scholar
  38. Ho D, Evans GJ (1997) Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Monatna soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Anal Commun 34:363–364Google Scholar
  39. Huang SW, Jin JY (2008) Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ Monit Assess 139(1–3):317–327Google Scholar
  40. Huang H, Li T, Gupta D, He Z, Yang XE, Ni B, Li M (2012) Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. J Environ Sci 24:376–386Google Scholar
  41. Huynh TH (2009) Impacts des métaux lourds sur l’interaction plante/verre de terre/microflore tellurique. Université Paris-Est, Océan 170pGoogle Scholar
  42. Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492Google Scholar
  43. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press Inc. 3ème Ed Kalbitz K, Wennrich R. Sci Total Environ, Boca Raton, pp 209–227Google Scholar
  44. Kalbitz K, Rupp H, Meißner R, Braumann F (1998) Veränderungen in der Stoffdynamik eines Niedermoorgebietes durch Renaturierungsmaßnahmen. In: Geller W et al (ed) Gewässerschutz im Einzugsgebiet der Elbe. UFZ, Umweltforschungszentrum Leipzig-Halle GmbH. Vieweg+Teubner VerlagGoogle Scholar
  45. Karczewska A (1996) Metal species distribution in top- and sub-soil soil in an area affected by copper smelter emissions. Appl Geochem 11:35–42Google Scholar
  46. Khamseh A, Shahbazi F, Oustan S, Najafi N, Davatgar N (2017) Impact of tailings dam failure on spatial features of copper contamination (Mazraeh mine area, Iran). Arab J Geosci 10:244Google Scholar
  47. Kossoff D (2014) Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl Geochem 51:229–245Google Scholar
  48. Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg JM (2008) Phytoremediation technologies used to reduce environmental threat posed by metal-contaminated soils: theory and reality. In: Barnes I, Kharytonov MM (eds) Simulation and assessment of chemical processes in a multiphase environment. NATO Science for Peace and Security Series C: Environmental Security. Springer, DordrechtGoogle Scholar
  49. Lama EJ, Cánovasb EJM, Gálveza ME, Montofréb ÍL, Keithc BF, Fazd Á (2017) Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J Geochem Explor 182:210–217Google Scholar
  50. Lamy I (2002) Réactivité des matières organiques des sols vis-à-vis des métaux. J Natl l’étude Sols 22Google Scholar
  51. Lei M, Zhang Y, Khan S, Qin PF, Liao BH, Liao BH (2010) Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn Mining area. Environ Monit Assess 168:215–222Google Scholar
  52. Li LY, Li RS (2000) The role of clay minerals and effect of H+ ions on removal of heavy metal (Pb2+) from contaminated soil. Can Geotech J 37:296–307Google Scholar
  53. Liakopoulos A, Lemiere B, Michael K, Crouzet C, Laperche V, Romaidis I, Drougas I, Lassin A (2010) Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece). Waste Manag Res 28:996–1009Google Scholar
  54. Lopez-Sanchez JF, Sahuquillo A, Fiedler HD, Rubio R, Rauret G, Muntau H, Quevauviller P (1998) CRM 601, a stable material for its extractable content of heavy metals. Analyst 123:1675–1677Google Scholar
  55. Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J Environ Qual 13:372–376Google Scholar
  56. Martin R, Sanchez DM, Gutierrez AM (1998) Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas River, Spain. Talanta 46:1115–1121Google Scholar
  57. McLean JE, Bledsoe BE (1992) Behaviour of metals in soils. U.S. Environmental Protection Agency /540/S92/018Google Scholar
  58. Mil-Homens M, Stevens RL, Abrantes FF, Cato I (2006) Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res 26(10):1184–1205Google Scholar
  59. Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659Google Scholar
  60. Montoroi JP (1997) Electric conductivity of soil solution and aqueous. Etude Gest Sols 4:279–298Google Scholar
  61. Mouni L, Belkhiri L, Bouzaza A, Bollinger JC (2017) Interactions between Cd, Cu, Pb, and Zn and four different mine soils. Arab J Geosci 10:77Google Scholar
  62. Mseddi H (2013) Caractérisation des rejets miniers des sédiments et des sols d’El Akhouat (bassin versant aval de l’oued Siliana) phytoremediation des sols pollués -Tunisie-. Thèse de Doctorat de l’Université de Tunis El Manar, Tunisie. 221pGoogle Scholar
  63. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. J Geol 2:109–118Google Scholar
  64. Narwal RP, Singh BR, Salbu B (1999) Association of cadmium, zinc, copper and nickel with components in naturally heavy metal rich soils studied by parallel and sequential extractions. Commun Soil Sci Plant 30:1209–1230Google Scholar
  65. Neal NH, Sposito G (1986) Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Soil Sci 44:641–650Google Scholar
  66. Nganje TN, Adamu CI, Ugbaja AN, Ebieme E, Sikakwe GU (2011) Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arab J Geosci 4(1–2):199–205Google Scholar
  67. Obiora SC, Chukwu A, Davies TC (2016) Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. J Afr Earth Sci 116:182–189Google Scholar
  68. Ociepa E, Kisiel A, Lach J (2010) Effect of fertilization with sewage sludge and composts on the change of cadmium and zinc solubility in soils. J Environ Stud 2:171–175Google Scholar
  69. Othmani MA (2013) Caractérisation des rejets miniers de Touiref (Nord-Ouest de la Tunisie) et dynamique des métaux lourds dans les conditions superficielles et impact sur l’environnement. Thèse de Doctorat de l’Université de Tunis El Manar, Tunisie, 243pGoogle Scholar
  70. Ouchir N, Ben Aissa L, Boughdiri M, Aydi A (2016) Assessment of heavy metal contamination status in sediments and identification of pollution source in Ichkeul Lake and rivers ecosystem, northern Tunisia. Arab J Geosci 9:539Google Scholar
  71. Papadopoulou-Vrynioti K, Alexakis D, Bathrellos GD, Skilodimou HD, Vryniotis D, Vasiliades E (2014) Environmental research and evaluation of agricultural soil of the Arta plain, western Hellas. J Geochem Explor 136:84–92Google Scholar
  72. Parizanganeh A, Hajisoltani P, Zamani A (2010) Assessment of heavy metal pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran. Procedia Environ Sci 2:162–166Google Scholar
  73. Perel’man AI (1986) Geochemical barriers: theory and practical applications. Appl Geochem 1(6):669–680Google Scholar
  74. Plassard F, Winiarski T, Petit-Ramel M (2000) Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. J Contam Hydrol 42:99–111Google Scholar
  75. Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321Google Scholar
  76. Rao SC, Northup BK (2008) Forage and grain soybean effects on soil water content and use efficiency. Crop Sci 48(2):789–793Google Scholar
  77. Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Luck D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233Google Scholar
  78. Rayment GE, Lyons DJ (2011) Soil chemical methods—Australasia. CSIRO Publishing, Melbourne 495+20 ppGoogle Scholar
  79. Rodriguez L, Ruiz E, Alonso-Azcarate J, Rincon J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manag 90:1106–1116Google Scholar
  80. Rouvier H (1977) Géologie de l'extrême Nord tunisien: Tectonique et paléogéographies superposées à l'extrémité orientale de la chaîne nord-maghrébine. Doctorat d'Etat. 2 Volumes, Univer Paris-Orsy 703 pGoogle Scholar
  81. Sainfeld P (1952) Les gites plombo-zincifères de la Tunisie. Ann Mines Géol 9 Tunis:285Google Scholar
  82. Salbu B, Krekling T, Oughton DH (1998) Characterization of radioactive particles in the environment. Analyst 123:843–849Google Scholar
  83. Salomons W (1993) Adoption of common schemes for single and sequential extractions of trace metals in soil and sediments. Int J Environ Anal Chem 51:3–4Google Scholar
  84. Salomons W, Stigliani W (1995) Biogeodynamics of pollutants in soils and sediments. Springer-Verlag, Berlin, 352pGoogle Scholar
  85. Schultz LG (1964) Quantitative interpretation of mineral composition from X-ray and chemical data for the Pierre Shale U. S. Geol. Survey Prof. Paper 391C, United States Government Printing Office, Washington, D.C., C1-C31Google Scholar
  86. Sebei A (2007) Impact des rejets miniers sur l’environnement. Cas de bassins versants des Oueds Mellègue et Tessa (Tunisie septentrionale). Thèse de Doctorat de l’Université deTunis El Manar, Tunisie, 256pGoogle Scholar
  87. Sherlock EJ, Lawrence RW, Poulin R (1995) On the neutralization of acid rock drainage by carbonate and silicate minerals. Environ Geol 25:43–54Google Scholar
  88. Sliti N (2013) Minéralogie et composition chimiques des rejets miniers et des sols dans l’ancien district de Khanguet Kef Ettout. Mastère de Recherche de l’Université de Tunis El Manar, Tunisie, 131pGoogle Scholar
  89. Staunton S (2002) Direct and indirect effects of organic matter on metal immobilisation in soil. Dev Soil Sci 28(Part A):79–97Google Scholar
  90. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627Google Scholar
  91. Trefrey JH, Presley BJ (1976) Heavy metals in sediments from San Antonio Bay and the Northwest Gulf of Mexico. Environ Geol 1(5):283–294Google Scholar
  92. Trifi M, Dermech M, Charef A, Azouzi R, Hjiri B (2018) Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage. Arab J Geosci 11:328Google Scholar
  93. Ure AM, Quevauviller P, Muntau P, Greipink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51(1–4):135–151Google Scholar
  94. Usero J, Gamero M, Morillo J, Gracia I (1998) Comparative study of three sequential extraction procedures for metals in marine sediments. Environ Int 24:478–496Google Scholar
  95. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal – contaminated land. A review. Environ Chem Lett 8:1–17Google Scholar
  96. Van der Marel HW (1966) Quantitative analysis of clay minerals and their admixtures. Contrib Mineral Petrol 12(1):96–138Google Scholar
  97. Van Loon GW, Duffy SJ (2007) Chemia środowiskowa, Wyd. Naukowe PWN, WarszawaGoogle Scholar
  98. Wang L, Li Y, Haoran Wang H, Cui X, Wang Xing LA, Wang X, Wang C, Gan D (2017) Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sulfide deposit Western China. J Geochem Explor 173:1–12Google Scholar
  99. Yadav HL, Jamal A (2015) Impact of mining on water resources in India. Int J Adv Res 3(10):1009–1015Google Scholar
  100. Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783Google Scholar
  101. Zhong L, Liu L, Yang J (2012) Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environ Earth Sci 67(8):2261–2268Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Center of Water Researches and TechnologiesSolimanTunisia
  2. 2.Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des ProduitsFaculté de Pharmacie de MonastirMonastirTunisia

Personalised recommendations