Advertisement

Assessment of groundwater quality of El Ouara aquifer (southeastern Tunisia), geochemical and isotopic approaches

  • Toumi NajetEmail author
  • Agoubi Belgacem
  • Kharroubi Adel
Original Paper
  • 22 Downloads

Abstract

Water scarcity is a major problem all over the world due to changes in precipitation patterns and intensity. Water quality is also so far affected. Despite the fact that water covers about 70% of the Earth’s surface, safe and clean drinking water is not available only to 1 in 9 people worldwide. And more than one third of Africa’s population lacks access to safe drinking water. Therefore, experts must target this concern and analyze the different complications related to the precious natural resource in order to save it from wastage. As a matter of fact, Tunisia is not an exception. It is struggling from the same water shortages. From here emerges the goal of this present study which is to determine the main factors and the geochemical processes that control water chemistry of the Mio-Plio-Quaternary (MPQ) aquifer for El Ouara plain, located in southeastern of Tunisia. And in order to monitor the water quality and assess the main physicochemical processes in this aquifer, a total of 30 samples were collected in Mio-Plio-Quaternary aquifer from wells located in Tataouine and Medenine regions and analyzed for various physical and chemical parameters, such as electrical conductivity, pH, dissolved solids (TDS), Na+, Mg2+, K+, Ca2+, Cl, HCO3, SO42−, NO3, and Br. The major and minor elements were analyzed by the liquid chromatography at the Laboratory of Water Geochemical Analysis at the Higher Institute of Water Sciences and Techniques of Gabès. Stable isotopes of δ18O and δ2H were measured by isotopic water liquid using laser absorption spectrometry and were expressed in δ‰ with respect to the Vienna Standard Mean Ocean Water (VSMOW). The hydrochemical data from a total of 30 groundwater samples indicate that the groundwater is characterized by the dominance of Na-Cl and Ca-Mg-SO4 water types. The plotting of all samples in Gibbs diagram illustrated that the groundwater chemistry is controlled by rock-water interaction and evaporation processes. Nitrate concentrations are significantly higher than WHO guideline drinking water values and are probably linked to the overfertilization, septic system, uncontrolled sewage, and animal waste. Isotope data reveal enriched groundwater in δ2H and δ18O suggesting an evaporation effect during recharge processes and depleted groundwater recharged during paleoclimate periods. This difference attests to the heterogeneity of recharge modes and probably longer residence time in the MPQ aquifer.

Keywords

El Ouara plain Mio-Plio-Quaternary Groundwater Geochemistry Nitrate Isotopes 

Notes

Acknowledgments

The authors greatly appreciate constructive comments of the anonymous reviewers and editorial handling. Also, they gratefully acknowledge the contributions of the staff members of Medenine and Tataouine Water Resources Division/Agriculture Ministry for their help during the field work. We also thank the technical staff at the Laboratory of Higher Institute of Science and Technology of Water of Gabes (ISSTEG, Tunisia) for their help and assistance during laboratory analyses.

References

  1. Abid K (2010) Identification et caractérisation hydrogéologique et géochimique de la nappe du Continental Turonien dans le Sud tunisien et sa relation avec les aquifères adjacents. Thèse de Doctorat, Ecole Nationale d’Ingénieurs de Sfax, TunisieGoogle Scholar
  2. Abid K, Dulinski M, HadjAmmar F, Rozanski K, Zouari K (2012) Deciphering interaction of regional aquifers in Southern Tunisia using hydrochemistry and isotopic tools. Appl Geochem 27(1)44–55.  https://doi.org/10.1016/j.apgeochem.2011.08.015 CrossRefGoogle Scholar
  3. Agoubi B, Kharroubi A, Abichou T, Abida H (2013) Hydrochemical and geoelectrical investigation of Marine Jeffara aquifer, southeastern Tunisia. Appl Water Sci 3:415–429.  https://doi.org/10.1007/s13201-013-0091-4 CrossRefGoogle Scholar
  4. Alcalà FJ, Custodio E (2004) Use of the Cl/Br ratio as a tracer to identify the origin of salinity in some coastal aquifers of Spain. 18 SWIM. Cartagena 2004, Spain. (Ed. Araguás, Custodio and Manzano). IGMEGoogle Scholar
  5. Alcalà FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207.  https://doi.org/10.1016/j.jhydrol.2008.06.028 CrossRefGoogle Scholar
  6. Ali MS (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, west Saudi Arabia. Environ Geol 46:741–749CrossRefGoogle Scholar
  7. Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Assess Rev.  https://doi.org/10.1016/j.eiar.11.002
  8. Almasri MN, Kaluarachchi JJ (2004) Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J Hydrol 295:225–245.  https://doi.org/10.1016/j.jhydrol.03.013 CrossRefGoogle Scholar
  9. Almasri MN, Kaluarachchi JJ (2007) Modeling nitrate contamination of groundwater in agricultural watersheds. J Hydrol 343:211–229.  https://doi.org/10.1016/j.jhydrol.06.016 CrossRefGoogle Scholar
  10. Alyahyaoui S, Gabtni H, Jallouli C (2015) Contribution de la sismique réflexion pour la cartographie d’un aquifère profond: Exemple du l’aquifère du Crétacé supérieur (Complexe Terminal) au Sud-Est de la Tunisie. J Adv Res Sci Technol 2(1):153–172Google Scholar
  11. Amer R, Ripperdan R, Wang T, Encarnación J (2012) Groundwater quality and management in arid and semi-arid regions: case study, Central Eastern Desert of Egypt. J Afr Earth Sci 69:13–25.  https://doi.org/10.1016/j.jafrearsci.2012.04.002 CrossRefGoogle Scholar
  12. Anderson PE, Benton MJ, Trueman CN, Paterson BA, Guny G (2007) Paleoenvironments of the vertebrates on the southern shore of the Tethys: the nonmarine Early Cretaceous of Tunisia. Paleogeogr, Paleoclimatol, Paleoecol 243:118–131CrossRefGoogle Scholar
  13. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam 536 pGoogle Scholar
  14. Aubert F (1891a) Note sur la géologie de l’extrême Sud de la Tunisie C. R Som Soc Géol Fr Paris 8:55Google Scholar
  15. Aubert F (1891b) Note sur la géologie de l’extrême Sud de la Tunisie. Bull Soc Géol Fr Paris 19(3):408–413Google Scholar
  16. Ayadi Y, Mokadem N, Besser H, Khelifi F, Harabi S, Hamad A, Boyce A, Laouar R, Hamed Y (2017a) Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in Southern Mediterranean basin (Teboursouk area, NW Tunisia). J Afr Earth Sci.  https://doi.org/10.1016/j.jafrearsci.2017.10.018
  17. Ayadi R, Trabelsi R, Zouari K, Saibi H, Itoi R, Khanfir H (2017b) Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia. Hydrogeol J 26:983–1007.  https://doi.org/10.1007/s10040-017-1702-1 CrossRefGoogle Scholar
  18. Barale G, Ouaja M (2002) La biodiversité végétale des gisements d’âge Jurassique supérieur-Crétacé inférieur de Merbah El Asfer (Sud-Tunisien). Cretac Res 23:707–737CrossRefGoogle Scholar
  19. Barale G, Ouaja M, Srarfi D (2007) Un nouveau gisement à plantes du Callovien de Beni Barka, région de Tataouine, Su-Est de la Tunisie: paléobotanique et taphonomie. C R Palevol 6:375–384.  https://doi.org/10.1016/j.crpv.2007.09.012 CrossRefGoogle Scholar
  20. Ben Ayed N (1986) Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début, du Mésozoïque à l’Actuel. Thèse Doctorat d’Etat. University de Paris Sud, Centre d’Orsay, p. 286Google Scholar
  21. Ben Ismail MH (1991) Les bassins mésozoïques (Trias à Aptien) du sud de la Tunisie : stratigraphie intégrée, caractéristiques géophysiques et évolution géodynamique. Thèse, Université de Tunis II, 44e6pGoogle Scholar
  22. Ben Youssef M, Biely A, Kamoun Y, Zouari M (1985) L’Albien moyen supérieur à Knemiceras forme la base de la grande transgression crétacée au Tebaga de Medenine (Tunisie méridionale). C R Acad Sci Ser II Paris 300:965–968Google Scholar
  23. Benton MJ, Bouaziz S, Buffettaut E, Martill D, Ouaja M, Soussi M, Trueman C (2000) Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern Tunisia. Paleogeogr, Paleoclimatol, Paleoecol 157:227–246CrossRefGoogle Scholar
  24. Berkaloff E (1933) Contribution à l’étude géologique de l’Extrême-sud tunisien. Le territoire militaire des Matmatas. Bull Soc Géol Fr 3:83–87Google Scholar
  25. Böhlke JK, OConnell ME, Prestegaard KL (2007) Groundwater stratification and delivery of nitrate to an incised stream under varying flow conditions. J Environ Qual 36:664–680.  https://doi.org/10.2134/jeq.2006.0084 CrossRefGoogle Scholar
  26. Bouaziz S (1986) La déformation dans la plateforme du sud tunisien (Dahar et Djeffara). Approche multiscalaire et pluridisciplinaire. Thèse. Faculté des Sciences de Tunis, 197 pGoogle Scholar
  27. Bouaziz S (1995) Etude de la tectonique cassante dans la Plateforme et l’atlas sahariens (Tunisie méridionale): Evolution des paleochamps de contraintes et implications géodynamiques, Thèse Doctorat, Université Tunis II, Tunisie, 485ppGoogle Scholar
  28. Bouaziz S, Donze P, Ghanmi M, Zarbout M (1989) La série à dominante continentale (Oxfordien à Cénomanien) de la falaise du Dahar (Sud tunisien); son évolution du Tebaga de Medenine à la frontière tripolitaine. Géol Méditerr 16:67–76CrossRefGoogle Scholar
  29. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie central. Ann Mines Géol 345Google Scholar
  30. Busson G (1967) Le Mésozoïque saharien, première partie : L’Extrême Sud tunisien. Publ. Centre Rech. Zones arides (C.N.R.S), série Géologie, 8, 185pGoogle Scholar
  31. Carlson MA, Lohse KA, McIntosh JC, McLain JET (2011) Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. J Hydrol 409:196–211.  https://doi.org/10.1016/j.jhydrol.2011.08.020 CrossRefGoogle Scholar
  32. Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin, Australia. Chem Geol 231:38–56.  https://doi.org/10.1016/j.chemgeo.2005.12.009 CrossRefGoogle Scholar
  33. Chaouachi MCH (1985) Contribution à l’étude des paléoenvironements et de la diagenèse carbonatée de la série permienne du JebelTebaga de Médenine (Sud-tunisien). D.E.A. Fac. Sc. Tunis, pp 1–104, 24 Fig., 6 plGoogle Scholar
  34. Chaouachi MCH (1988) Etude sédimentologique des séries du Permien supérieur du J. Tebaga de Médenine, Sud-Est de la Tunisie. Genèse, Diagenèse et potentiel du réservoir des corps récifaux. Thèse 3 ème cycle. Univ. Tunis. 299pGoogle Scholar
  35. Chen JS, Wang FY, Meybeck M, He DW, Xia XH, Zhang LT (2005) Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Glob Biogeochem Cycles 19:GB3016.  https://doi.org/10.1029/2004GB00232
  36. Chowdary VM, Rao NH, PBS S (2005) Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agric Water Manag 75:194–225.  https://doi.org/10.1016/j.agwat.2004.12.013 CrossRefGoogle Scholar
  37. Colombani N, Cuoco EB, Mastrocicco M (2017) Origin and pattern of salinization in the Holocene aquifer of the southern Po Delta (NE Italy). J Geochem Explor 175:130–137.  https://doi.org/10.1016/j.gexplo.2017.01.011 CrossRefGoogle Scholar
  38. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-I 8 in natural waters. Science 133:1833–1834CrossRefGoogle Scholar
  39. Deshmukh KK (2013) Impact of human activities on the quality of groundwater from Sangamner area, Ahmednagar District, Maharashtra, India. Int Res J Environ Sci 2(8):66–74Google Scholar
  40. Deshpande RD, Gupta SK (2013) Groundwater helium: an indicator of active tectonic regions along Narmada River, central India. Chem Geol 344:42–49.  https://doi.org/10.1016/j.chemgeo.2013.02.020 CrossRefGoogle Scholar
  41. Dunn SM, Vinten AJA, Lilly A, DeGroote J, McGechan M (2005) Modelling nitrate losses from agricultural activities on a national scale. Water Science & Technology 51(3-4):319–327 ©IWA Publishing 2005CrossRefGoogle Scholar
  42. Edmunds WM (1996) Bromine geochemistry of British groundwaters. Mineral Mag 60:275–284CrossRefGoogle Scholar
  43. Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822CrossRefGoogle Scholar
  44. Gabtni H, Jallouli C, Mickus KL, Zouari H, Turki MM (2009) Deep structure and crustal configuration of the Jeffara basin (Southern Tunisia) based on regional gravity, seismic reflection and borehole data: how to explain a gravity maximum within a large sedimentary basin. J Geodyn 47:142–152CrossRefGoogle Scholar
  45. Gabtni H, Alyahyaoui S, Jallouli C, Hasni W, Mickus KL (2012) Gravity and seismic reflection imaging of a deep aquifer in an arid region: case history from the Jeffara basin, southeastern Tunisia. J Afr Earth Sci 66-67:85–97CrossRefGoogle Scholar
  46. Gabtni H, Jallouli C, Mickus KL, Turki MM (2013) Geodynamics of the Southern Tethyan Margin in Tunisia and Maghrebian domain: new constraints from integrated geophysical study. Arab J Geosci 6:271–286CrossRefGoogle Scholar
  47. Geyh MA (2000) An overview of 14C analysis in the study of groundwater. J Radiocarbon 42(1):99–114.  https://doi.org/10.1017/S0033822200053078 CrossRefGoogle Scholar
  48. Ghedhoui R (2014) Apports de l’imagerie sismique et des SIG à l’étude morphostructurale de la Jeffara (Sud Est tunisien): Implications géodynampiques et intérêts pétroliersGoogle Scholar
  49. Ghodbanea M, Boudoukhaa A, Benaabidate L (2015) Hydrochemical and statistical characterization of groundwater in the Chemora area, Northeastern Algeria. Desalin Water Treat 57:14858–14868.  https://doi.org/10.1080/19443994.2015.1067924 CrossRefGoogle Scholar
  50. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Sciences 170:1088–1090CrossRefGoogle Scholar
  51. Gi-Tak C, Kangjoo K, Seong T, Kyoung H, Soon O, Byoung Y, Hyoung S, Chul W (2004) Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere 55:369–378CrossRefGoogle Scholar
  52. Glintzboeckel CH, Rabaté J (1964) Microfaunes et microfaciès du Permo-Carbonifères du Sud-tunisien. 45., 6 fig. 108 pl. Leide, E.J. Brill. EdGoogle Scholar
  53. Grimmeisen F, Lehmann MF, Liesch T, Goeppert N, Klinger J, Zopfi J, Goldscheider N (2017) Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system. Sci Total Environ 583:202–213.  https://doi.org/10.1016/j.scitotenv.2017.01.054 CrossRefGoogle Scholar
  54. Hamed Y, Dassi L, Ahmadi R, Ben Dhia H (2012) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia / Etude géochimique et isotopique du systèmeaquifèremulticouche du bassin de Moulares-Redayef, sudtunisien. Hydrol Sci J 53:1241–1252.  https://doi.org/10.1623/hysj.53.6.1241 CrossRefGoogle Scholar
  55. Hamed Y, Awad S, Ben Sâad A (2013a) Nitrate contamination in groundwater in the Sidi Aïch-Gafsa oases region, Southern Tunisia. Env Earth Sci.  https://doi.org/10.1007/s12665-013-2445-5
  56. Hamed Y, Ahmadi R, Hadji R, Mokadem N, Ben Dhia H, Ali W (2013b) Groundwater evolution of the Continental Intercalaire aquifer of southern Tunisia and a part of southern Algeria: use of geochemical and isotopic 216 Y. Ayadi et al. / Journal of African Earth Sciences 137 (2018) 208e217 indicators. Desalinization water Treat. pp 1–7Google Scholar
  57. Hamed Y, Ahmadi R, Demdoum A, Bouri S, Gargouri I, Ben Dhia H, Al-Gamal S, Laouar R, Choura A (2014) Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-Southern Tunisia. J Afr Earth Sci 100:418–436.  https://doi.org/10.1016/j.jafrearsci.2014.07.012 CrossRefGoogle Scholar
  58. Herrera MTA, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Gomez VMR, Nuñez D, Dominguez IRM, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969.  https://doi.org/10.1016/j.jhazmat.2012.08.005 CrossRefGoogle Scholar
  59. Ibrakhimov M, Khamzina A, Forkutsa I, Paluasheva G, Lamers JPA, Tischbein B, Vlek PLG, Martius C (2007) Groundwater table and salinity: spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin). http://link.springer.com.sci-hub.org/article/10.1007/s10795-007-9033-3
  60. Jabal MSA, Abustan I, Rozaimy MR, El Najar H (2014) Groundwater beneath the urban area of Khan Younis City, southern Gaza Strip (Palestine): hydrochemistry and water quality. Arab J Geosci, pp 1–13Google Scholar
  61. Jarraya H, Hadj Ammar F, Abid K, Zouari K, Aissa A (2015) Study of Rejim Maatoug groundwater in southern Tunisia using isotope. J Hydroenviron Res xx:1e12.  https://doi.org/10.1016/j.jher.2013.04.001
  62. Jeanton HC, Zouari K, Travi Y, Daoud A (2001) Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax. Géosciences de surface / Surface Geosciences (Hydrologie–Hydrogéologie / Hydrology–Hydrogeology). C R Acad Sci Paris Sci Terre Planètes Earth Planet Sci 333(2001):625–631 S1251-8050(01)01671-8/FLAGoogle Scholar
  63. Kammoun F (1988) Le Jurassique du Sud tunisien, témoin de la marge africaine de la Tethys: Stratigraphie, Sédimentologie et micropaléontologie. Thèsedoct.3ème cycle.Univ. Paul Sabatier. Toulouse. 237 pGoogle Scholar
  64. Karpierz SJ, Sitek S, Jakobsen R, Kowalczyk A (2017) Geochemical and isotopic study to determine sources and processes affecting nitrate and sulphate in groundwater influenced by intensive human activity - carbonate aquifer Gliwice (southern Poland). Appl Geochem 76:168–181.  https://doi.org/10.1016/j.apgeochem.2016.12.005 CrossRefGoogle Scholar
  65. Kearney TH (1906) Date varieties and date culture in Tunis. US Department of Agriculture, Bureau of Plant Industry, Bulletin no. 92, Issue 6Google Scholar
  66. Khairy H, Janardhana MR (2013) Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amole-Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ Monit Assess 185(11):9237–9264CrossRefGoogle Scholar
  67. Kharroubi A, Tlahigue F, Agoubi B, Azri C, Bouri S (2012) Hydrochemical and statistical studies of the groundwater salinization in Mediterranean arid zones: case of the Jerba coastal aquifer in southeast Tunisia. Environ Earth Sci (2012) 67:2089–2100.  https://doi.org/10.1007/s12665-012-1648-5
  68. Kharroubi A, Farhat S, Agoubi B, Lakhbi Z (2013) Assessment of water qualities and evidence of seawater intrusion in a deep confined aquifer: case of the coastal Djeffara aquifer (Southern Tunisia). J Water Supply 63:76–84.  https://doi.org/10.2166/aqua.2013.105 CrossRefGoogle Scholar
  69. Khessibi M (1985) Etude sédimentologique des affleurements permiens du Djebel Tebaga de Médenine (Sud Tunisien). Bull Cent Rech Exp Prod Elf-Aquitaine, Pau 9(2):427–464 12 fig., 8 plGoogle Scholar
  70. Kirchner JOG (1994) Investigation into the contribution of ground water to the salt load of the Breede River, using natural isotopes and chemical tracers. Report No. 344/1/95. Water Research Commission, PretoriaGoogle Scholar
  71. Kondoh A, Shimada J (1997) The origin of precipitation in eastern Asia by deuterium excess. J Jpn Soc Hydrol Water Resour 10:627–629.  https://doi.org/10.3178/jjshwr.10.627
  72. Krouse HR, Mayer B (1999) Sulfur and oxygen isotopes in sulphate. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 195–231Google Scholar
  73. Liu F, Song X, Yang L, Zhang Y, Han D, Ma Y, Bu H (2015) Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China. Hydrol Earth Syst Sci 19:551–565.  https://doi.org/10.5194/hess-19-551-2015 CrossRefGoogle Scholar
  74. Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to groundwater: an introduction. Oxford University Press, New YorkGoogle Scholar
  75. M’Rabet A, Chaouachi MC, Razgallah S, Duvernoy B (1987) The Upper Permian carbonate and siliciclastic series of Jebel Tebaga (Southern Tunisia): an example of platform to slope sedimentation. 8th IAS Reg. Meet. of sedimentology (Tunis) Abstr, p 262–263Google Scholar
  76. M’Rabet A, Mejri F, Burollet PF, Memmi L, Chandoul H (1995) Catalog of type sections in Tunisia, Cretaceous, Entreprise Tunisienne d’Activités Pétrolières, Mémoire n 8A, 123pGoogle Scholar
  77. Machavaram MV, Krishnamurthy RV (1995) Earth surface evaporative process: a case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim Cosmochim Acta 59:4279–4283CrossRefGoogle Scholar
  78. Makni J (2012) Contribution des approches hydrogéologique, hydrochimique et géothermique à l’étude des systèmes aquifères du Sud-est tunisien : Etude de transfert d’eaux souterraines inter-aquifères profondes. Thèse, Fac. Sc. de Sfax, Université de Sfax. p142Google Scholar
  79. Makni J, Bouri S, Ben Dhia H (2011) Hydrochemistry and geothermometry of thermal groundwater of southeastern Tunisia (Gabes region). Arab J Geosci 6:2673–2683.  https://doi.org/10.1007/s12517-011-0510-5 CrossRefGoogle Scholar
  80. Mamou A (1990) Caractéristiques et evaluation des resources en eau du Sud-tunisien. Thèse de doctorat, Université de Paris Sud, p236Google Scholar
  81. Mathieu G (1949) Contribution à l’étude des Monts Troglodytes dans l’Extrême Sud-tunisien. Ann Mines et Géol, Tunis, n°4, 82p., 11 fig.h.t., 1 carte, 3 plGoogle Scholar
  82. Mclean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In Sililo, 0. et al. (eds.) Groundwater: Past Achievements and Future Challenges. AA Balkema, Rotterdam. pp.567–573Google Scholar
  83. Memmi L, Burollet PF, Viterbo I (1986) Lexique stratigraphique de la Tunisie, première partie: Précambrien et Paléozoïque. Notes du Service Géologique (Tunisie) 53, 64pGoogle Scholar
  84. Miao Z, Carroll KC, Brusseau ML (2013) Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: the Monument Valley site in Arizona, USA. J Hydrol 504:207–215.  https://doi.org/10.1016/j.jhydrol.2013.09.030 CrossRefGoogle Scholar
  85. Mohammadi Z, Salimi M, Faghih A (2014) Assessment of groundwater recharge in a semi-arid groundwater system using water balance equation, southern Iran. J Afr Earth Sci 95:1–8.  https://doi.org/10.1016/j.jafrearsci.2014.02.006 CrossRefGoogle Scholar
  86. Najib S, Fadili A, Mehdi K, Riss J, Makan A, Guessir H (2016) Salinization process and coastal groundwater quality Chaouia, Morocco. J Afr Earth Sci 115:17–31.  https://doi.org/10.1016/j.jafrearsci.2015.12.010 CrossRefGoogle Scholar
  87. Nasher G, Al-Sayyaghi A, Al-Matary A (2013) Identification and evaluation of the hydrogeochemical processes of the lower part of Wadi Siham catchment area, Tihama plain, Yemen. Arab J Geosci 6(6):2131–2146CrossRefGoogle Scholar
  88. Negrel Ph, Pauwels H, Dewandel B, Gandolfi JM, Mascré C, Ahmed S ( 2011) Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer. J. Hydrol. 55–70.  https://doi.org/10.1016/j.jhydrol.2010.11.033
  89. Newell ND, Rigby JK, Driggs A, Boyd DW, Stehli FG (1976) Permian reef complex, Tunisia. Brigham Young Univ Geol Stud 23:72–112Google Scholar
  90. Nicolli HB, Bundschuh J, Garcίa JW, Falcón CM, Jean JS (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina). Water Res 44:5589–5604.  https://doi.org/10.1016/j.watres.2010.09.029 CrossRefGoogle Scholar
  91. Ophori DU, Toth J (1989) Characterization of ground-water flow by field mapping and numerical simulation, Ross Creek Basin, Alberta, Canada. vol 27, No-2-Ground Water-March-April 1989.  https://doi.org/10.1111/j.1745-6584.1989.tb00440.x
  92. Ouaja M (2003) Etude sédimentologique et paléobotanique du Jurassique moyen-Crétacé inférieur du bassin de Tataouine (Sud-Est de la Tunisie). PhD. Thesis, Université Claude Bernard Lyon1Google Scholar
  93. Ouaja M, Ferry S, Barale G, Srarfi D (2002) Faciès de dépôt du Jurassique et du Crétacé du Bassin de Tataouine (Sud de la Tunisie). Environnement de dépôt des plantes et vertébrés du « Continental Intercalaire » révisé. Applicabilité des modèles de stratigraphie séquentielle aux profils sédimentaires très plats de la marge nord-gondwanienne. Excursion par le Service Géologique de Tunisie et l’Association des Sédimentologistes Français, pp 100Google Scholar
  94. Ouaja M, Barale G, Philippe M, Ferry S (2011) Occurrence of an in situ fern grove in the Aptian Douiret Formation, Tataouine area, South-Tunisia. Geobios 44:473–479.  https://doi.org/10.1016/j.geobios.2011.01.005 CrossRefGoogle Scholar
  95. Pacheco F (1996) Contributions of water-rock interactions to the composition of groundwater in areas with a sizeable anthropogenic input: A case study of the waters of the Fundo area, central Portugal. Water Resour Res 32(12):3553–3570 0043-1397/96/96WR-01683 $09.00CrossRefGoogle Scholar
  96. Pervinquière L (1912) Sur la géologie de l’Extrême Sud de la Tunisie et de quelques points de la tripolitaine. Comptes Rendus sommaires de la Société géologique de France 6, p 45–46 ParisGoogle Scholar
  97. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923CrossRefGoogle Scholar
  98. Plumme LN, Jones BF, Truesdell AH (1976) WATEQF–a Fortan IV version of WATEQ a computer program for calculating chemical equilibrium of natural waters.US Geil- Surv Water Res, Washington DC. (Revised 1978, 1984)Google Scholar
  99. Postma D, Boesen C (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27(8):2027–2045 0043-1397/91/91 WR-00989505.00CrossRefGoogle Scholar
  100. Raulin C, Frizon de Lamotte D, Bouaziz S, Khomsi S, Mouchot N, Ruiz G, Guillocheau F (2011) Late Triassic-early Jurassic block tilting along E-W faults, in southern Tunisia: new interpretation of the Tebaga of Medenine. J Afr Earth Sci 61:94–104CrossRefGoogle Scholar
  101. Razgallah S, Chaouachi MC M’Rabet A (1989) Les récifs à algues du Permien supérieur du JebelTebaga de Medenine. Sud-Est de la Tunisie. Géol. Méditerranéenne. Tome XVI, n°2-3, pp 213–231Google Scholar
  102. Robaszynski F, Zagrarni MF, Caron M, Amédro F (2010) The global bio-events at the Cenomanian-Turonian transition in the reduced Bahloul Formation of Bou Ghanem (central Tunisia). Cretac Res 31:1–31CrossRefGoogle Scholar
  103. Robaux A, Choubert G (1941) Cartes et notices géologiques et hydrogéologiques provisoire de la Tunisie. Feuilles de Sidi-Toui et Mechehed Salah au 1/200000 e. Dir. Des trav Publ, Tunis. 38pGoogle Scholar
  104. Rossman NR, Zlotnik VA, Rowe CM, Szilagyi J (2014) Vadose zone lag time and potential 21st century climate change effects on spatially distributed groundwater recharge in the semi-arid Nebraska Sand Hills. J Hydrol 519:656–669.  https://doi.org/10.1016/j.jhydrol.2014.07.057 CrossRefGoogle Scholar
  105. Scott RL, Cablea WL, Huxmanb TE, Naglerc PL, Hernandeza M, Goodricha DC (2008) Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. J Arid Environ 72:1232–1246.  https://doi.org/10.1016/j.jaridenv.2008.01.001 CrossRefGoogle Scholar
  106. Skrzypek G, Dogramaci S, Rouillard A, Grierson PF (2016) Groundwater seepage controls salinity in a hydrologically terminal basin of semi-arid northwest Australia. J Hydrol S0022-1694(16)30587-X.  https://doi.org/10.1016/j.jhydrol.2016.09.033
  107. Solignac M (1931) Description d’une nouvelle carte géologique de la Tunisie à l’échelle du 1/500.000e. Mém Serv Carte Géol Tunisie, 77p. TunisGoogle Scholar
  108. Souid F, Agoubi B, Hamdi M, Telahigue F, Kharroubi A (2017) Groundwater chemical and fecal contamination assessment of the Jerba unconfined aquifer, southeast of Tunisia. Arab J Geosci 10:231.  https://doi.org/10.1007/s12517-017-2981-5 CrossRefGoogle Scholar
  109. Sousa MR, Rudolph DL, Frind EO (2014) Threats to groundwater resources in urbanizing watersheds: the Waterloo Moraine and beyond. Can Water Resour J 39:2CrossRefGoogle Scholar
  110. Stadler S, Osenbrück K, Knöller K, Suckow A, Sültenfuß J, Oster H, Himmelsbach T, Hötzl H (2008) Understanding the origin and fate of nitrate in groundwater of semi-arid environments. J Arid Environ 72:1830–1842.  https://doi.org/10.1016/j.jaridenv.2008.06.003 CrossRefGoogle Scholar
  111. Stigter TY, Van Ooijen SPJ, Post VEA, Appelo CAJ, Carvalho Dill AMM (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208:262–279CrossRefGoogle Scholar
  112. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14(1–2):79–99.  https://doi.org/10.1007/s10040-004-0396-3 CrossRefGoogle Scholar
  113. Tarki M, Dassi L, Jedoui Y (2012) Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrol Sci J 57:790–804.  https://doi.org/10.1080/02626667.2012.681783 CrossRefGoogle Scholar
  114. Telahigue F, Agoubi B, Souid F, Kharroubi A (2018) Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia. J Environ Radioact 182:74–84.  https://doi.org/10.1016/j.jenvrad.2017.11.025 CrossRefGoogle Scholar
  115. Termier H, Termier G, Vachard D (1977) Monographie paléontologique des affleurements permiens du Djebel Tebaga (Sud-Tunisien). Palaeontographica, Stuttgart, Abt. A., Bd 156, Lfg 1-3, 109 p., 18pl. 52 figGoogle Scholar
  116. Thomas R, Duraisamy V (2016) Hydrogeological delineation of groundwater vulnerability to droughts in semi-arid areas of western Ahmednagar district. Egypt J Remote Sens Space Sci (2016):xxx–xxx.  https://doi.org/10.1016/j.ejrs.2016.11.008
  117. Trabelsi R, Abid K, Zouari K, Yahyaoui H (2012) Groundwater salinization processes in shallow coastal aquifer of Djeffara plain of Medenine, Southeastern Tunisia. Environ Earth Sci 66:641–653.  https://doi.org/10.1007/s12665-011-1273-8 CrossRefGoogle Scholar
  118. Underdown R, Redfern J (2008) Petroleum generation and migration in the Ghadames Basin, north Africa: a two-dimensional basin-modeling study. AAPG Bull 92:53–76.  https://doi.org/10.1306/08130706032 CrossRefGoogle Scholar
  119. Wang H, Jiang XW, Li W, Han G, Guo H (2015) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J Hydrol 527:433–441.  https://doi.org/10.1016/j.jhydrol.2015.04.063 CrossRefGoogle Scholar
  120. WHO (2006) World Health Organization. Guidelines for drinking water quality, third edn, Incorporating First Addendum. http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html
  121. Xiao J, Jin ZD, Wang J, Zhang F (2015) Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan 1-10.  https://doi.org/10.1016/j.quaint.2015.01.021
  122. Xing L, Guo H, Zhan Y (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci.  https://doi.org/10.1016/j.jseaes.2013.03.017
  123. Zenetti BC, Ben Dhia H (1998) Hydrodynamisme et géochimie de l’aquifère triasique du Sud Tunisien. Afr Geosci 5(R(3)):297–311Google Scholar
  124. Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333:239–251.  https://doi.org/10.1016/j.jhydrol.2006.08.013 CrossRefGoogle Scholar
  125. Zouari K, Trabelsi R, Chkir N (2010) Using geochemical indicators to investigate groundwater mixing and residence time in the aquifer system of Djeffara of Medenine (southeastern Tunisia). J Hydrol 19:209–219Google Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Research Applied Hydrosciences (06/UR/10-03)Higher Institute of Water Sciences and Techniques of GabesGabèsTunisia

Personalised recommendations