Advertisement

Modeling and mapping of soil salinity in Tafilalet plain (Morocco)

  • Mohammed El hafyani
  • Ali Essahlaoui
  • Mohamed El baghdadi
  • Ana C. Teodoro
  • Meriame Mohajane
  • Abdellah El hmaidi
  • Abdelhadi El ouali
Original Paper
  • 101 Downloads

Abstract

The Tafilalet plain in Morocco is a very rich ecosystem. It presents enormous ecological and natural values, such as groundwater and agricultural soil; however, it is undergoing rapid changes due to natural and anthropogenic factors, where soil salinity constitutes one of the major problems. In this context, remote sensing data/techniques used to map and to model soil salinity is a valuable tool in management activities and in decision-making. This paper focuses on modeling and mapping soil salinity in Tafilalet plain, Morocco, based on Landsat 8 OLI satellite data in combination with ground field data. Our results indicated that the coefficient of determination (R2) varies from 0.53 to 0.75 and the Root Mean Square Error (RMSE) ranges between 0.62 and 0.80 dS/m. Based on the results, we can conclude that this approach is an effective and valid methodology for modeling and spatial mapping soil salinity in this area and this method could also be applied for other regions with similar characteristics.

Keywords

Tafilalet plain Landsat 8 OLI Electrical conductivity Soil salinity 

Notes

Acknowledgements

The authors acknowledge the financial support of VLIR-UOS for the help of the equipment and missions at the KU Leuven, Belgium. Thanks are also due to the anonymous reviewers for their valuable comments on this article, which allowed us to improve the scientific quality of this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbas A et al (2013) Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys Chem Earth 55–57:43–52, Elsevier Ltd.  https://doi.org/10.1016/j.pce.2010.12.004 CrossRefGoogle Scholar
  2. Allbed A, Kumar L (2013) Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Adv Remote Sens 2(December):373–385.  https://doi.org/10.4236/ars.2013.24040 CrossRefGoogle Scholar
  3. Allbed A, Kumar L, Sinha P (2014) Mapping and modelling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques. Remote Sens 6(2):1137–1157.  https://doi.org/10.3390/rs6021137 CrossRefGoogle Scholar
  4. Bannari A, Guedon AM, el-Harti A, Cherkaoui FZ, el-Ghmari A (2008) Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun Soil Sci Plant Anal 39(19–20):2795–2811.  https://doi.org/10.1080/00103620802432717 CrossRefGoogle Scholar
  5. Barbouchi, M., Abdelfattah, R., Chokmani, K., Aissa, N. B., Lhissou, R., & El Harti, A. (2015) Soil salinity characterization using polarimetric InSAR coherence: Case studies in Tunisia and Morocco. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 3823–3832Google Scholar
  6. Billaux P, Bryssine G (1966) Les sols du MarocGoogle Scholar
  7. Bouaziz M, Matschullat J, Gloaguen R (2011) Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Compt Rendus Geosci 343(11–12):795–803.  https://doi.org/10.1016/j.crte.2011.09.003 CrossRefGoogle Scholar
  8. Chaturvedi L et al (1983) Multispectral remote sensing seeps. IEEE Trans Geosci Remote Sens 21(3):239–251CrossRefGoogle Scholar
  9. Dehaan RL, Taylor GR (2002) Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens Environ 80(3):406–417.  https://doi.org/10.1016/S0034-4257(01)00321-2 CrossRefGoogle Scholar
  10. El Harti A et al (2016) Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int J Appl Earth Obs Geoinf 50:64–73, Elsevier B.V.  https://doi.org/10.1016/j.jag.2016.03.008 CrossRefGoogle Scholar
  11. FAO (2002) WFS:fyl Focus on the issuesGoogle Scholar
  12. Farifteh J, Farshad A, George RJ (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3–4):191–206.  https://doi.org/10.1016/j.geoderma.2005.02.003 CrossRefGoogle Scholar
  13. Farifteh J, van der Meer F, Atzberger C, Carranza EJM (2007a) Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110(1):59–78.  https://doi.org/10.1016/j.rse.2007.02.005 CrossRefGoogle Scholar
  14. Farifteh J, van der Meer F, Carranza EJM (2007b) Similarity measures for spectral discrimination of salt-affected soils. Int J Remote Sens 28(23):5273–5293.  https://doi.org/10.1080/01431160701227604 CrossRefGoogle Scholar
  15. Farifteh J, van der Meer F, van der Meijde M, Atzberger C (2008) Spectral characteristics of salt-affected soils: a laboratory experiment. Geoderma 145(3–4):196–206.  https://doi.org/10.1016/j.geoderma.2008.03.011 CrossRefGoogle Scholar
  16. Hamzeh S et al (2012) Estimating salinity stress in sugarcane fields with spaceborne hyperspectral: vegetation indices. Int J Appl Earth Obs Geoinf 21(1):282–290, Elsevier B.V.  https://doi.org/10.1016/j.jag.2012.07.002 CrossRefGoogle Scholar
  17. Ibrahim M (2016) Modeling soil salinity and mapping using spectral remote sensing data in the arid and semi-arid region. Int J Remote Sens Appl 6:76.  https://doi.org/10.14355/ijrsa.2016.06.008 CrossRefGoogle Scholar
  18. Joly F (1962) Etudes sur le relief du Sud-Est Marocain: thèse pour le doctorat ès Lettres présentée à la Faculté des lettres et Sciences humaines de l’Université de ParisGoogle Scholar
  19. Khan NM, Rastoskuev VV, Sato Y, Shiozawa S (2005) Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric Water Manag 77(1–3):96–109.  https://doi.org/10.1016/j.agwat.2004.09.038 CrossRefGoogle Scholar
  20. Lhissou R, El A, Chokmani K (2014) Mapping soil salinity in irrigated land using optical remote sensing data. Eur J Soil Sci 3(2):82–88Google Scholar
  21. Metternicht GI (1998) Fuzzy classification of JERS-1 SAR data: an evaluation of its performance for soil salinity mapping. Ecol Model 111(1):61–74.  https://doi.org/10.1016/S0304-3800(98)00095-7 CrossRefGoogle Scholar
  22. Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20.  https://doi.org/10.1016/S0034-4257(02)00188-8 CrossRefGoogle Scholar
  23. Norman CP, Lyle CW, Heuperman AF, & Poulton D (1989) Tragowel plains–challenge of theplains. Tragowel plains salinity management plan, soil salinity survey, Tragowel Plains Subregional workinggroup 49-89.Google Scholar
  24. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023.  https://doi.org/10.1093/jxb/erj108 CrossRefGoogle Scholar
  25. Russell WGR (1990) Some spectral considerations for remote sensing of soil salinity. Aust J Soil Res 28:417–431CrossRefGoogle Scholar
  26. Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drain Syst 14(3):199–205.  https://doi.org/10.1023/A:1026560204665 CrossRefGoogle Scholar
  27. Sidike A, Zhao S, Wen Y (2014) Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. Int J Appl Earth Obs Geoinf 26:156–175, Elsevier B.V.  https://doi.org/10.1016/j.jag.2013.06.002 CrossRefGoogle Scholar
  28. Singh RP, Srivastav SK (1990) Mapping of waterlogged and salt-affected soils using microwave radiometers. Int J Remote Sens 11(January 2015):1879–1887.  https://doi.org/10.1080/01431169008955135 CrossRefGoogle Scholar
  29. Taylor GR et al (1996) Radar imagery of saline soils using airborne. Remote Sens Environ 57(February 1995):127–142CrossRefGoogle Scholar
  30. Ug MVM, Ahmed Douaik TT (2008) Stochastic approaches for space–time modeling and interpolation of soil salinity. In: Metternicht G, Zinck JA (eds) Remote sensing of soil salinization: impact on land management. CRC Press, Boca Raton, pp 273–289Google Scholar
  31. Wang Q, Li P, Chen X (2012) Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: a laboratory experiment. Geoderma 170:103–111, Elsevier B.V.  https://doi.org/10.1016/j.geoderma.2011.10.015 CrossRefGoogle Scholar
  32. Yu R et al (2010) Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agric Water Manag 97(12):1952–1960, Elsevier B.V.  https://doi.org/10.1016/j.agwat.2010.03.009 CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2019

Authors and Affiliations

  1. 1.Department of Geology, Laboratory of Geoengineering and environment, Research Group “Water Sciences and Environment Engineering”, Faculty of SciencesMoulay Ismail UniversityMeknèsMorocco
  2. 2.Laboratory of Geo-resources and Environment, Department of Geology, Faculty of Science and TechnologyMy Slimane UniversityBéni MellalMorocco
  3. 3.Earth Sciences Institute (ICT) and Department of Geosciences, Environment and Land Planning, Faculty of SciencesUniversity of PortoPortoPortugal
  4. 4.Department of Biology, Research Group “Soil and Environnement Microbiology Unit”, Faculty of SciencesMoulay Ismail UniversityMeknèsMorocco

Personalised recommendations