Geochemistry of the Neoproterozoic Narji limestone, Cuddapah Basin, Andhra Pradesh, India: implication on palaeoenvironment

  • Adrika RoyEmail author
  • Gopal Chakrabarti
  • Debasish Shome
Original Paper


The Neoproterozoic Narji Formation of Cuddapah Basin, Southern India is mainly composed of limestones with minor amount of clastic rocks. Limestones are massive as well as laminated and occasionally chert bearing. Geochemistry (major, trace, and REE) of limestones is studied to strengthen the knowledge on depositional environment of Narji Formation in the direction to better figure out the development of Cuddapah Basin during Neoproterozoic era. Average SiO2 (25.97), Al2O3/TiO2 (16.67), and K2O/Al2O3 (0.21) ratios suggest clastic contamination in the Narji limestones. PAAS (Post Archean Australian Shale) normalized REE + Y pattern of Narji limestones are showing seawater like REE + Y pattern. The Er/Nd and Y/Ho ratios (average 0.17 and 35.68, respectively) of Narji limestones indicate the retention of normal seawater character with the signatures of terrigenous input and diagenesis process. Positive Ce anomaly, high U/Th (> 1.25), and V/(V + Ni) (> 0.5) ratios of Narji limestones clearly indicate their deposition in dyoxic to anoxic condition.


Geochemistry Trace elements REE Paleooxidation Neoproterozoic Narji Cuddapah 



Analyses of the major oxides and trace, REE are carried out in National Centre for Earth Science Studies, Thiruvananthapuram, Kerala and National Geophysical Research Institute, Hyderabad, respectively. Sincere thanks are also being accorded to Dr. Faraj Habeeb Tobia and an anonymous reviewer for their constructive comments.

Funding information

This work was financially supported by the Department of Science and Technology (DST), Government of India vide PURSE (Phase-II) program (No. F4/SC/20/15) and University Grants Commission (UGC), New Delhi for the scholarship (UGC Non-Net) given to the first author.


  1. Abiding A, Calagari AA (2015) Rare earth element geochemistry of the upper Permian limestone: the Kanigorgeh mining district, NW Iran. Turk J Earth Sci 24:365–382CrossRefGoogle Scholar
  2. Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of an early Archean stromatolitic carbonate platform. Chem Geol 270:148–163CrossRefGoogle Scholar
  3. Anand M, Gibson SA, Subbarao KV, Kelley SP, Dickin AP (2003) Early proterozoic melt generation processes beneath the intra cratonic Cuddapah basin. Southern India J Petrol 44:2139–2171CrossRefGoogle Scholar
  4. Anaya-Gregorio A, Armstrong-Altrin JS, Machain-Castillo ML, Montiel-Garcia PC, Ramos-Vazquez MA (2018) Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. J Palaeogeogr 7:3CrossRefGoogle Scholar
  5. Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramsay S (2003) Geochemistry of Upper Miocene Kudankulam limestones, southern India. Int Geol Rev 45:16–26CrossRefGoogle Scholar
  6. Armstrong-Altrin JS, Lee YI, Verma SP, Worden RH (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the Upper Miocene Kudankulam formation, southern India: implications for paleoenvironment and diagenesis. Chemie Erde-Geochem 69(1):45–60CrossRefGoogle Scholar
  7. Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodriguez JL (2011) Petrography and stable isotope geochemistry of the cretaceous El Abra limestone (Actopan), Mexico: implication on diagenesis. J Geol Soc India 77:349–359CrossRefGoogle Scholar
  8. Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosales-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013) Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Compt Rendus Geosci 345(4):185–202CrossRefGoogle Scholar
  9. Armstrong-Altrin JS, Machain-Castillo ML, Rosales-HoZ L, Carranza-Edwards A, Sanchaz Cabeza JA, Ruiz-Fernan AC (2015a) Provenance and depositional history of continental slope sediments in the South western Gulf of Mexico unraveled by geochemical analysis. Cont Shelf Res 95:15–26CrossRefGoogle Scholar
  10. Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas Western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 64:199–216CrossRefGoogle Scholar
  11. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333CrossRefGoogle Scholar
  12. Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating Fe oxyhydroxide: experimental evidence for Ce oxidation, Y-ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77CrossRefGoogle Scholar
  13. Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55CrossRefGoogle Scholar
  14. Bertram CN (2012) Sedimentology, age and stable isotope evolution of the Kurnool group Cuddapah Basin. Dissertation, The University of AdelaideGoogle Scholar
  15. Chakrabarti G, Shome D, Kumar S, Stephens GM III, Kah LC (2014) Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle formation, Cuddapah basin, India. J Asian Earth Sci 91:263–279CrossRefGoogle Scholar
  16. Chen S, Gui H, Sun L (2014) Geochemical characteristics of REE in the late neo-proterozoic limestone from the northern Anhui Province ,China. Chin J Geochem 33:187–193CrossRefGoogle Scholar
  17. Condie KC (1991) Another look at rare earth elements in shales. Geochim Cosmochim Acta 55:2527–2531CrossRefGoogle Scholar
  18. Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the front range, Colorado, USA. Geochim Cosmochim Acta 59(2):279–294CrossRefGoogle Scholar
  19. Crawford AR, Compston W (1973) The age of the Cuddapah and Kurnool systems, southern India. J Geol Soc Austr 19:453–464CrossRefGoogle Scholar
  20. De Baar HJW, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco trench. Geochim Cosmochim Acta 52:1203–1219CrossRefGoogle Scholar
  21. Devi KR, Duarah BP (2015) Geochemistry of Ukhrul limestone of Assam-Arakan subduction basin, Manipur, Northeast India. J Geol Soc India 85:367–337CrossRefGoogle Scholar
  22. Folk R (1965) Some aspects of recrystallization in an ancient limestone. In: Pray LC, Murrey RC (eds) Dolomitization and limestone diagenesis, Society of Economic Paleontology Mineralogy Special Publication, vol 13, pp 14–48Google Scholar
  23. French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 ma southern Bastar–Cuddapah mafic igneous events India: a newly recognized large igneous province. Precambrian Res 160:308–322CrossRefGoogle Scholar
  24. Fu X, Wang J, Zeng Y, Tan F, He J (2011) Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chem Erde 71(1):21–30CrossRefGoogle Scholar
  25. German CR, Elderfield H (1989) Rare earth elements in Saanich inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53:2561–2571CrossRefGoogle Scholar
  26. Hernández-Hinojosa V, Montiel-García PC, Armstrong-Altrin JS, Nagarajan R, Kasper-Zubillaga JJ (2018) Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian J Earth Environ Sci 13(1):161–174Google Scholar
  27. Hua G, Yuansheng D, Lian Z, Jianghai Y, Hu H (2013) Trace and rare earth elemental geochemistry of carbonate succession in the middle Gaoyuzhuang formation, Pingquan section: implications for early Mesoproterozoic Ocean redox conditions. J Palaeogeogr 2(2):209–221Google Scholar
  28. Jones B, Manning DC (1994) Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chem Geol 111(1–4):111–129CrossRefGoogle Scholar
  29. Kale V (2016) Proterozoic basins of Penninsular India status within the global Proterozoic system. Proc Indian Natl Sci Acad 82(3):461–477CrossRefGoogle Scholar
  30. Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525CrossRefGoogle Scholar
  31. Khelen AC, Manikyamba C, Ganguly S, Singh TD, Subramanyam KSV, Ahmad SM, Reddy MR (2017) Geochemical and stable isotope signatures of Proterozoic stromatolitic carbonates from the Vempalle and Tadpatri formations, Cuddapah Supergroup, India: implications on paleoenvironment and depositional conditions. Precambrian Res 298:365–384CrossRefGoogle Scholar
  32. Lokesh Bharani P (2015) Sedimentology provenance and depositional environments of Kurnool group palnad sub basin Andhra Pradesh South India. Ph.D. dissertation, University of Mysore, Karnataka, IndiaGoogle Scholar
  33. Madesh P, Lokesh Bharani P, Baby Shwetha S (2012) Study of microstylolite from carbonate rocks of Kurnool group, Andhra Pradesh, South India. Indian J Appl Res 1(2)Google Scholar
  34. Madhavaraju J, Lee YI (2009) Geochemistry of the Dalmiapuram formation of the Uttatur group (early cretaceous), Cauvery Basin, southeastern India: implications on provenance and paleo-redox conditions. Rev Mex Cienc Geol 26:380–394Google Scholar
  35. Madhavaraju J, Loser H, Lee YII, Santacruz RL, Pi-Puig T (2016) Geochemistry of lower cretaceous limestones of the Alisitos formation, Baja California, México: implications for REE source and paleo-redox conditions. J S Am Earth Sci 66:149–165CrossRefGoogle Scholar
  36. Mazumdar A, Tanaka K, Takahashi T, Kawabe I (2003) Characteristics of rare earth element abundances in shallow marine continental platform carbonates of late Neoproterozoic successions from India. Geochem J 37:277–289CrossRefGoogle Scholar
  37. Mitra R, Chakrabarti G, Shome D (2018) Geochemistry of the Palaeo-Mesoproterozoic Tadpatri shales, Cuddapah Basin, India: implications on provenance, paleoweathering and paleoredox conditions. Acta Geochem 37(5):715–733CrossRefGoogle Scholar
  38. Mouli Chandra A, Hanumanthu RC, Rao Jagadishwara R (2012) Conflicting Land-use Practises in the Narji Limestone Belt in YSR District,Andhra Pradesh (AP),India. Earth Sci India 5(3):1–9Google Scholar
  39. Nagaraja Rao BK, Rajurkar ST, Ramalingaswami G, Ravindra BB (1987) Stratigraphy, structure and evolution of Cuddapah Basin. Purana basins of peninsular India. Geol Soc India Bangalore Bull 6:33–86Google Scholar
  40. Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad formation, Bhima Basin, Karnataka, southern India. Geosci J 15(1):9–25CrossRefGoogle Scholar
  41. Nath BN, Bau M, Ramalingeswara Rao B, Rao CHM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Acta 61(12):2375–2388CrossRefGoogle Scholar
  42. Patranabis-Deb S, Saha D, Tripathy V (2012) Basin stratigraphy, sea-level fluctuations and their global tectonic connections—evidence from the Proterozoic Cuddapah Basin. Geol J 47:263–283CrossRefGoogle Scholar
  43. Ramkumar M (2004) Lithology, petrography, microfacies, environmental history and hydrocarbon prospects of the Kallankurichchi formation (upper cretaceous, Ariyalur group, South India). Palaeont Stratigr. Facies 12:77–100Google Scholar
  44. Ramos-Vázquez MA, Armstrong-Altrin JS, Rosales-Hoz L, Machain-Castillo ML, Carranza-Edwards A (2017) Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos River delta, western Gulf of Mexico, Mexico. Arab J Geosci 10(6):148CrossRefGoogle Scholar
  45. Rimmer SM (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA). Chem Geol 206:373–391CrossRefGoogle Scholar
  46. Sen S, Mishra M (2015) Geochemistry of Rohtas limestone from Vindhyan Supergroup, Central India: evidences of detrital input from felsic source. Geochem Int 53(12):1107–1122CrossRefGoogle Scholar
  47. Shaltami OR (2015) Geochemistry of the Shahat marl member, Wadi Az Zad, Al Jabal Al Akhdar, NE Libya. Arab J Earth Sci 2(3):23–39Google Scholar
  48. Sherman CE, Fletcherher CH, Rubin KH (1999) Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. J Sediment Res 69(5):1083–1097CrossRefGoogle Scholar
  49. Sholkovitz ER (1990) Rare earth elements in marine sediments and geochemical standards. Chem Geol 88:333–347CrossRefGoogle Scholar
  50. Singh AK, Tewari VC, Sial AN, Khanna PP, Singh NI (2016) Rare earth elements and stable isotope geochemistry of carbonates from the mélange zone of Manipur ohiolitic complex, indo-Myanmar Orogenic Belt, northeastern India. Carbonates Evaporites 31(2):139–151CrossRefGoogle Scholar
  51. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford, p 312Google Scholar
  52. Tobia FH (2018) Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq. Geosci J.
  53. Tobia FH, Aqrawi AM (2016) Geochemistry of rare earth elements in carbonate rocks of the Migra Mir formation (lower Triassic), Kurdistan region, Iraq. Arab J Geosci 9:259CrossRefGoogle Scholar
  54. Worash G, Valera R (2002) Rare earth element geochemistry of the Antalo Supersequence in the Mekele outlier (Tigray region, northern Ethiopia). Chem Geol 182:395–407CrossRefGoogle Scholar
  55. Wright J, Seymour RS, Shaw HF (1984) REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geol Soc Am Spec Pap 196:325–340Google Scholar
  56. Zachariah JK, Bhaskar Rao YJ, Srinivasan R, Gopalan K (1999) Pb, Sr and Nd isotope systematics of uranium mineralised stromatolitic dolomites from the Proterozoic Cuddapah Supergroup, South India: constraints on age and provenance. Chem Geol 162:49–64CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Department of Geological SciencesJadavpur UniversityKolkataIndia
  2. 2.Education Directorate, Government of West BengalKolkataIndia

Personalised recommendations