Numerical heat and fluid flow modeling of the Hercynian Draa Sfar polymetallic (Zn–Pb–Cu) massive sulfide deposit, Central Jbilets, Morocco

  • Laila SalamaEmail author
  • El Mostafa Mouguina
  • Essaid El Bachari
  • Larbi Rddad
  • Mohamed Outhounjite
  • Mohamed Essaoudi
  • Lhou Maacha
  • Mohamed Zouhair
Original Paper


Draa Sfar is a polymetallic (Zn–Pb–Cu) volcanogenic massive sulfide deposit with an actual resource of 13 Mt at 4.0% Zn and 1.3% Pb. It is part of the central Jbilets area known for its several Cu–Zn ore deposits. The ore is hosted in the upper Visean-Namurien sedimentary formation. Owing to the complexity of the geology of the ore deposits, numerical simulation approach was attempted to shed light into the temperature distribution, the circulation of the hydrothermal fluid and the genesis of massive sulfide ore bodies by evaluating the permeability, porosity, and thermal conductivity. On the basis of this simulation approach, the ore is predicted to be deposited at a temperature ranging between 230 and 290 °C. This temperature range is dependent on the pre-existing temperature of the discharge area where a metal-rich fluid precipitated the ore. The duration of the Draa Sfar ore body formation is predicted to be 15, 000 to 50, 000 years. Based on geological studies of Draa Sfar deposit together with the aforementioned results of the simulation approach, an ore genetic model for the massive sulfide ore bodies is proposed. In this model, the supply of ore-forming fluids is ensured by the combination of seawater and magmatic waters. Magma that generated rhyodacite dome acted as the heat source that remobilized the circulation of these ore-bearing fluids. The NW-SE trending faults acted as potential pathways for both the downward and upward migration of the ore-forming fluids. Due to their high permeability, the ignimbritic facies, host rocks of Draa Sfar ore bodies, have favored the circulation of the fluids. The mixing between the ore-forming fluids of magmatic origin and the descending seawaters and/or in situ pore waters led to the formation the ore bodies in 35,000 years. The position and size of the ore body, determined by the simulation approach, is consistent with the actual field geological data.


Draa Sfar 3D modeling Numerical simulation Heat Fluid 



This contribution reports part of a PhD project of L. Salama at Cadi Ayyad University (FSSM Marrakech) sponsored by CMG-MANAGEM. The company Managem, responsible for the Draa Sfar mining operations, provided mine access, samples, and geological data; this support is gratefully acknowledged. The authors are grateful to Dr. Ozlem Yagbasan and Dr. Domenico Doronzo for their comments and suggestions that improve the quality of this paper.


  1. Aarab, E. M and Beauchamp, J., (1987) Le magmatisme carbonifère pré-orogénique des Jebilet centrales (Maroc), Précisions pétrographiques et sédimentologiques: Implications géodynamiques: Comptes Rendus de l’Académie des Sciences de Paris (Série II) 304:169–175Google Scholar
  2. Aarab, E. M, (1995) Genèse et différenciation d’un magma tholeiitique en domaine extensif intracontinental, l’exemple du magmatisme pré-orogénique des Jebilet (Maroc hercynien). Thèse de doct d’Etat. Univ. Marrakech 251 pGoogle Scholar
  3. Barrie CT, Cathles LM, Erendi A (1999) Finite element heat and fluid-flow computer simulations of a deep ultramafic sill model for the Giant Kidd Creek volcanic-associated massive sulfide deposit, Abititi subprovince, Canada. Econ Geol Monogr 10:529–540Google Scholar
  4. Belkabir A, Gibson H, Marcoux E, Lenz D, Rziki S (2008) Geology and wall-rock alteration at the Hercynian Draa Sfar Zn-Pb-Cu deposit. Morocco Ore Geology Reviews 33:280–306. CrossRefGoogle Scholar
  5. Ben Aissi L. (2008) Contribution à l’étude gitologique des amas sulfurés polymétalliques de Draa Sfar et de Koudiat Aicha : comparaison avec les gisements de Bensliman et de Kettara, Jebilet centrales, Maroc hercynien. Thèse doctorat Uni, Marrakech, 353 pGoogle Scholar
  6. Brauhart CW, Groves D, Morant P (1998) Regional alteration systems associated with VMS mineralization at Panorama, Pilbara, Western Australia. Econ Geol 93:292–303CrossRefGoogle Scholar
  7. Carter LS, Kelley SA, Blackwell DD, Naeser ND (1998) Heat flow and thermal history of the Anadarko basin. AAPG 82(2):291–316Google Scholar
  8. Cathles LM (1993) A capless 350 degrees C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems. Econ Geol 88:1975–1986Google Scholar
  9. Chi G, Savard MM (1998) Basinal fluid flow models related to Pb-Zn mineralization, southern margin of the Maritimes Basin. Econ Geol 93:896–910CrossRefGoogle Scholar
  10. Christian Schardt & Grant Garven & Karen D. Kelley & David L. Leach., (2008) Reactive flow models of the Anarraaq Zn–Pb–Ag deposit, Red Dog district, AlaskaGoogle Scholar
  11. Currie IG (1974) Fundamental mechanics of fluids. McGraw-Hill 0-07-015000-1Google Scholar
  12. Davis EE, Chapman DS, Forster CB (1996) Observations concerning the vigour of hydrothermal circulation in young oceanic crust. J Geophys Res 101:2927–2942CrossRefGoogle Scholar
  13. Dumoulin, C., (2000) Convection mantellique et structure de la lithosphère. Thèse de doctorat, Université Paris XI. 255 pGoogle Scholar
  14. Fehn U, Cathles L (1979) Hydrothermal convection at slow-spreading mid-ocean ridges. Tectonophysics 55:239–260CrossRefGoogle Scholar
  15. Fisher AT, Becker K, Davis EE (1997) The permeability of young oceanic crust east of Juan de Fuca ridge determined using borehole thermal measurements. Geophys Res Lett 24:1311–1314CrossRefGoogle Scholar
  16. Fontaine FJ, Rabinowicz M, Boulégue J (2001) Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges. Earth Planet Sci Lett 184:407–425CrossRefGoogle Scholar
  17. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) VMS deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th anniversary volume, 1905–2005. Littleton, Colo, pp 523–560Google Scholar
  18. Gibson H (2004) Volcanology and VMS relevant to the volcanology and VMS deposits of the Moroccan hercynides (Guemassa and Jebilet Terranes). Rapport Interne Managem:38Google Scholar
  19. Giordano G, Doronzo DM (2017) Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’ aspect ratio. Sci Rep-Nat 7:4444CrossRefGoogle Scholar
  20. Girault, V. and Raviart, P.A. (1986) Finite element methods for Navier–Stokes equations: theory and algorithms. Springer Series in Computational Mathematics SpringerGoogle Scholar
  21. Hannington, M.D., de Ronde, C.E.J., and Petersen, S., (2005) Sea-floor tectonics and submarine hydrothermal systems, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., Economic Geology 100th anniversary volume 1905–2005, Littleton, Colorado, Society of Economic Geologists 111–141Google Scholar
  22. Hecht. F, Le Hyaric. A., Pironneau. O., Ohtsuka. K., (1998) Freefem++, Third Edition, Version 3.26–2,
  23. Huston DL, Large RR (1987) Genetic and exploration significance of the zinc ratio (100 Zn/(Zn _Pb)) in massive sulfide systems. Econ Geol 82:1521–1539CrossRefGoogle Scholar
  24. Huston DL, Stenvens B, Southgate PN, Muhling P, Wyborn L (2006) Australian Zn-Pb-Ag ore forming systems: a review and analysis. Econ Geol 101:1117–1157CrossRefGoogle Scholar
  25. Huvelin P. (1977) “Etude géologique et gîtologique du massif hercynien des Jebilet (Maroc occidental) “Notes et Mem. Serv. Géol. (Maroc). 232 bis.Google Scholar
  26. Lagarde JL, Choukroune P (1982) Cisaillement ductile et granitoïdes syntectoniques: l’exemple du massif hercynien des Jebilet (Maroc). Bull Soc Géol Fr 24:299–307CrossRefGoogle Scholar
  27. Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys J Int 26:515–535CrossRefGoogle Scholar
  28. Lowell RP (1980) Topographically driven subcritical hydrothermal convection in the oceanic crust. Earth Planet Sci Lett 49:21–28CrossRefGoogle Scholar
  29. Lowell RP, Burnell DK (1991) Mathematical modeling of conductive heat transfer from a freezing, convecting magma chamber to a single-pass hydrothermal system: implications for seafloor black smokers. Earth Planet Sci Lett 104:59–69CrossRefGoogle Scholar
  30. Lydon JW (1988) Ore deposit models ≠ 14, volcanogenic massive sulphide deposits part 2: genetic models. Geosci Can 15:43–65Google Scholar
  31. Makhoukhi S, Schmitt S, Bouabdelli M, Bastoul M, Marignac C (2000) Modeling of a MVT deposit-Touissit-Bou beker District (Eastern Morocco). J Geochem Explor 69:109–113CrossRefGoogle Scholar
  32. Marcoux E, Belkabir A, Gibson HL, Lentz D, Ruffet G (2008) Draa Sfar, Morocco: a Visean (331 ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment dominant terrane. Ore Geol Rev 33:307–328CrossRefGoogle Scholar
  33. Ohmoto H, Mizukami M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh TC (1983) Chemical processes of Kuroko formation. Econ. Geol. Monogr 5:570–604Google Scholar
  34. Parmentier EM, Spooner ETC (1978) A theoretical study of hydrothermal convection and the origin of the ophiolitic sulphide ore deposits of Cyprus. Earth Planet Sci Lett 40:33–44CrossRefGoogle Scholar
  35. Permingeat F (1954) Découverte du bismuth natif à Tiguelilt (Haut Atlas central). Notes. Serv. Géol. Maroc 9:93–95Google Scholar
  36. Piqué A (2001) Geology of Northwest Africa. Gebrüder Borntraeger, Berlin 310 pGoogle Scholar
  37. Rabinowicz M, Boulegue J, Genthon P (1998) Two- and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca ridge. J Geophys Res 103:24045–24065CrossRefGoogle Scholar
  38. Robb, L., (2005) Introduction to ore-forming processes. Blackwell Malden, Oxford,Victoria, 373 pGoogle Scholar
  39. Rziki S, (2012) Environnement géologique et modèle 3D du gisement polymétallique de Draa Sfar (Massif hercynien des Jbilets, Maroc): Implications et perspectives de développement. Thèse de Doctorat Présentée à la Faculté des Sciences Semlalia Marrakech, Maroc, 294pGoogle Scholar
  40. Schardt, C M S, (2004) Heat and fluid flow simulations in submarine volcanic terrains and implications for the formation of massive sulfide deposits: Tasmania, University of Tasmania, Ph.D. thesis, 304 p.Google Scholar
  41. Schardt C, Yang J, Large RR (2005) Numerical heat and fluid flow modeling of the panorama volcanic-hosted massive sulfide district, Western Australia. Econ Geogr 100:547–566Google Scholar
  42. Schardt C, Large RR, Yang J (2006) Controls on heat flow, fluid migration, and massive sulfide formation of an off-axis hydrothermal system—the Lau basin perspective. Am J Sci 306:103–134CrossRefGoogle Scholar
  43. Schardt C (2016) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Mineral Deposita 51:89–111. CrossRefGoogle Scholar
  44. Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems—vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry: reviews in mineralogy and geochemistry, vol 43, pp 469–525CrossRefGoogle Scholar
  45. Shanks III WCP (2012) Hydrothermal alteration in volcanogenic massive sulfide occurrence model: U.S. Geological Survey Scientific Investigations Report 2010–5070–C, chap. 11, 12 pGoogle Scholar
  46. Shanks III, W.C.P, and Koski, R.A., (2012) Introduction in VMS occurrence model: U.S. Geological Survey Scientific Investigations Report 2010–5070 –C, chap. 1, 4 pGoogle Scholar
  47. Sharma KM, Roy DG, Singh PK, Sharma LK, Singh TN (2017) Parametric study of factors affecting fluid flow through a fracture. Arab J Geosci 10(16).
  48. Strens MR, Cann JR (1986) A fracture–loop thermal balance model of black smoker circulation. Tectonophysics 122:307–324CrossRefGoogle Scholar
  49. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65CrossRefGoogle Scholar
  50. White, Frank M. (2006) Viscous fluid flow, McGraw-Hill ISBN 0–07-124493-XGoogle Scholar
  51. Yang J, Edwards RN, Molson JW, Sudicky EA (1996) Three-dimensional numerical simulations of the hydrothermal system within the TAG-like sulfide mound. Geophys Res Lett 23:3475–3478CrossRefGoogle Scholar
  52. Yang J, Latychev K, Edwards RN (1998) Numerical computation of hydrothermal fluid circulation in fractured earth structures. Geophys J Int 135:627–649CrossRefGoogle Scholar
  53. Yang J, Large R (2001) Computational modeling of hydrothermal ore forming fluid migration in complex earth structures. In: Xie H, Wang Y, Jiang Y (eds) Computer application in the mineral industries. AA Balkema, Rotterdam, pp 115–120Google Scholar
  54. Yang J (2002) Influence of normal faults and basement topography on ridge-flank hydrothermal fluid circulation. Geophys J Int 151:83–87CrossRefGoogle Scholar
  55. Yao.L & Tagen (2014) New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies. Ore Geol Rev 35:333–351Google Scholar
  56. Zaher MA, Ehara S, El-Qady G (2011) Conceptual model and numerical simulation of the hydrothermal system in Hammam Faraun hot spring, Sinai Peninsula, Egypt. Arab J Geosci 4(1):161–170. CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Service Geology, Mining Company of GuemassaMorocco Managem GroupCasablancaMorocco
  2. 2.Laboratory Dynamics of the Lithosphere and the Genesis of Mineral and Energy Resources (DLGR, URAC 43), Faculty of Sciences SemlaliaUniversity Cadi AyyadMarrakechMorocco
  3. 3.Laboratory of Information Systems Engineering (LISI), Faculty of Sciences SemlaliaUniversity Cadi AyyadMarrakechMorocco
  4. 4.Earth and Planetary Division, Department of Physical SciencesKingsborough Community College of the City University of New YorkBrooklyn, New YorkUSA

Personalised recommendations