Advertisement

Investigation of natural background radiation of sediments in Rameswaram Island, Tamil Nadu, India

  • I. Inigo Valan
  • I. Vijayalakshmi
  • R. Mathiyarasu
  • S. G. D. Sridhar
  • V. Narayanan
  • A. Stephen
Original Paper
  • 1 Downloads

Abstract

The aim of the study is to assess the natural background radiation in and around Rameswaram Island. In this context, samples were collected to measure the gamma radiations of 238U, 232Th, and 40K using NaI(Tl) detector-based gamma ray spectrometer. The average activity concentrations of 238U, 232Th, and 40K are noted to be well below the world average values. The calculated absorbed dose rate, radium equivalent activity, and hazard index values were below the prescribed limit. The grain size of the sediment was analyzed following Trefethen’s nomenclature, and its correlation with the natural background radioactivity was studied. The sample that contained clay show elevated activity of 40K. The percentage of heavy minerals shows concomitant variation in natural radioactivity, especially in the activity of 238U and 232Th.

Keywords

Primordial radionuclide Heavy minerals ZTR index Elemental analysis Correlation matrix 

Notes

Acknowledgements

The technical discussions with Mr. B. Parthasarathy, Mr. S. Maniyarasan, Mr. S. Shanmugam, and Mr. S. Munusamy, University of Madras, are gratefully acknowledged. Sincere thanks to Dr. L. Isaiarasu, Head, Department of Zoology, ANJAC, for the fruitful discussion. The suggestions by Prof. S. Ramasamy, Head, Department of Geology, University of Madras, is gratefully acknowledged.

Funding

Financial support was provided by UGC-CPEPA.

References

  1. Alappat L, Frechen M, Ramesh R, Tsukamoto S, Srinivasalu S (2011) Evolution of late Holocene coastal dunes in the Cauvery delta region of Tamil Nadu, India. J Asian Earth Sci 42:381–397CrossRefGoogle Scholar
  2. Babu N, Vasumathi N, Bhima Rao R (2009) Recovery of ilmenite and other heavy minerals from Teri Sands (Red Sands) of Tamil Nadu, India. J Miner Mater Charact Eng 8:149–159Google Scholar
  3. Barnett MO, Jardine PM, Brooks SC (2002) U(VI) adsorption to heterogeneous subsurface media: application of a surface complexation model. Environ Sci Technol 36:937–942CrossRefGoogle Scholar
  4. Baskar K, Sridhar SGD, Sivakumar T, Hussain SM, Maniyarasan S (2015) Temporal variation of physico-chemical parameters and ostracoda population, off Rameswaram, gulf of Mannar, southeast coast of Tamil Nadu, India. J Geol Soc India 86:663–670CrossRefGoogle Scholar
  5. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95CrossRefGoogle Scholar
  6. Boboye OA, Nwosu OR (2014) Petrography and geochemical indices of the Lagos lagoon coastal sediments, Dahomey Basin (southwestern Nigeria): sea level change implications. Quat Int 338:14–27CrossRefGoogle Scholar
  7. Charro E, Pardo R, Peña V (2013) Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain. J Environ Radioact 124:84–92CrossRefGoogle Scholar
  8. Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B, Miljanić Š (2015) Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ Sci Pollut Res 22:10317–10330CrossRefGoogle Scholar
  9. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593CrossRefGoogle Scholar
  10. Dalai TK, Rengarajan R, Patel PP (2004) Sediment geochemistry of the Yamuna River system in the Himalaya: implications to weathering and transport. Geochem J 38:441–453CrossRefGoogle Scholar
  11. Dalvi AA, Kumar SD, Reddy AVR (2014) A site-specific study on the measurement of sorption coefficients for radionuclides. Int J Environ Sci Technol 11:617–622CrossRefGoogle Scholar
  12. Derin M, Vijayagopal P, Venkatraman B, Chaubey RC, Gopinathan A (2012) Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India). PLoS One 7:e50468CrossRefGoogle Scholar
  13. Echevarria G, Sheppard MI, Morel J (2001) Effect of pH on the sorption of uranium in soils. J Environ Radioact 53:257–264CrossRefGoogle Scholar
  14. El-Arabi AM, Abbady AGE, Hussein AS (2006) Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt. Nucl Sci Tech 17:123–128CrossRefGoogle Scholar
  15. El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiat Meas 42:457–465CrossRefGoogle Scholar
  16. Ernst WG (2012) Overview of naturally occurring earth materials and human health concerns. J Asian Earth Sci 59:108–126CrossRefGoogle Scholar
  17. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387CrossRefGoogle Scholar
  18. Gowthaman R, Kumar VS, Dwarakish GS, Mohan SS, Singh J, Kumar KA (2013) Waves in gulf of Mannar and Palk Bay around Dhanushkodi, Tamil Nadu. Curr Sci 104:1431–1435Google Scholar
  19. GSI (2006) Geological Survey of India Miscellaneous publication no. 30 (Part IV, Tamil Nadu and Pondicherry), in: http://www.portal.gsi.gov.in/gsiImages/information/misc_pub_30_tamilnadu_2006_wm.pdf
  20. Guagliardi I, Buttafuoco G, Apollaro C, Bloise A, De Rosa R, Cicchella D (2013) Using gamma-ray spectrometry and Geostatistics for assessing geochemical behaviour of radioactive elements in the lese catchment (southern Italy). Int J Environ Res 7:645–658Google Scholar
  21. Guagliardi I, Rovella N, Apollaro C, Bloise A, De Rosa R, Scarciglia F, Buttafuoco G (2016a) Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, southern Italy). Chemosphere 150:97–108CrossRefGoogle Scholar
  22. Guagliardi I, Rovella N, Apollaro C, Bloise A, Rosa RD, Scarciglia F, Buttafuoco G (2016b) Modelling seasonal variations of natural radioactivity in soils: a case study in southern Italy. J Earth Syst Sci 125:1569–1578CrossRefGoogle Scholar
  23. Hejl AM, Ottmar RD, Timothy Jannik G, Eddy TP, Rathbun SL, Commodore AA, Pearce JL, Naeher LP (2013) Radionuclide activity concentrations in forest surface fuels at the Savannah River site. J Environ Manag 115:217–226CrossRefGoogle Scholar
  24. ICRP (1991) Annals of ICRP 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication, Pergamon: UK No. 60Google Scholar
  25. Jolyon HH, Steven LS, Andrzej W, Mehdi S, Werner B, Elisabeth C, Dominique L, Margot T, Isamu H (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks? J Radiol Prot 29:A29CrossRefGoogle Scholar
  26. Krishna Kumar S, Chandrasekar N, Seralathan P, Godson P, Magesh NS (2012) Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India. Environ Monit Assess 184:4127–4138CrossRefGoogle Scholar
  27. Krishnamoorthy N, Mullainathan S, Mehra R, Chaparro MAE, Chaparro MAE (2013) Radiation impact assessment of naturally occurring radionuclides and magnetic mineral studies of Bharathapuzha river sediments, South India. Environ Earth Sci 71:3593–3604Google Scholar
  28. Krishnamoorthy N, Mullainathan S, Mehra R, Chaparro MAE, Chaparro MAE (2014) Radiation impact assessment of naturally occurring radionuclides and magnetic mineral studies of Bharathapuzha river sediments, South India. Environ Earth Sci 71:3593–3604Google Scholar
  29. Kücükömeroglu B, Kurnaz A, Keser R, Korkmaz F, Okumusoglu NT, Karahan G, Sen C, Cevik U (2008) Radioactivity in sediments and gross alpha–beta activities in surface water of Fırtına River, Turkey. Environ Geol 55:1483–1491CrossRefGoogle Scholar
  30. Ligero RA, Ramos-Lerate I, Barrera M, Casas-Ruiz M (2001) Relationships between sea-bed radionuclide activities and some sedimentological variables. J Environ Radioact 57:7–19CrossRefGoogle Scholar
  31. Livshits TS (2009) Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions. Geol Ore Deposits 50:470–481CrossRefGoogle Scholar
  32. Mc Laughlin JP (2015) Some characteristics and effects of natural radiation. Radiat Prot Dosim 167:2–7CrossRefGoogle Scholar
  33. Melson Nathan H, Haliena Brian P, Kaplan Daniel I, Barnett Mark O (2012) Adsorption of tetravalent thorium by geomedia. Radiochim Acta 100:827–832CrossRefGoogle Scholar
  34. Murphy RJ, Lenhart JJ, Honeyman BD (1999) The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloids Surf A Physicochem Eng Asp 157:47–62CrossRefGoogle Scholar
  35. Natesan U (2009) Shoreline Dynamics of Dhanushkodi, Rameswaram Using Gis. In: Advances in Water Resources and Hydraulic Engineering: Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1294–1298CrossRefGoogle Scholar
  36. Örgün Y, Altınsoy N, Şahin SY, Güngör Y, Gültekin AH, Karahan G, Karacık Z (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot 65:739–747CrossRefGoogle Scholar
  37. Rahman SU, Matiullah, Malik F, Rafique M, Anwar J, Ziafat M, Jabbar A (2011) Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province, Pakistan. J Radioanal Nucl Chem 287:647–655CrossRefGoogle Scholar
  38. Ramasamy V, Dheenathayalu M, Ravisankar R, Ponnusamy V, Rajamanickkam GV, Sahayam D, Meenakshisundram V, Gajendran V (2004) Natural radioactivity measurements in beach-rock samples of south-east coast of Tamilnadu, India. Radiat Prot Dosim 111:229–235CrossRefGoogle Scholar
  39. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69:184–195CrossRefGoogle Scholar
  40. Ramasamy V, Sundarrajan M, Paramasivam K, Meenakshisundaram V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. Appl Radiat Isot 73:21–31CrossRefGoogle Scholar
  41. Ramasamy V, Sundarrajan M, Suresh G, Paramasivam K, Meenakshisundaram V (2014) Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India. Appl Radiat Isot 85:1–10CrossRefGoogle Scholar
  42. Ramesh R, Nammalwar P, Gowri VS (2008) Database on Coastal Information Of Tamilnadu. Institute for Ocean Management, Anna University, Chennai - 600 025, Environmental Information System (Envis) Centre, Department Of Environment, Government of Tamilnadu, Chennai – 600 015, in: http://tnenvis.nic.in/tnenvis_old/coastal%20data.pdf
  43. Rodríguez-Barroso MR, García-Morales JL, Coello Oviedo MD, Quiroga Alonso JM (2010) An assessment of heavy metal contamination in surface sediment using statistical analysis. Environ Monit Assess 163:489–501CrossRefGoogle Scholar
  44. Rojo I, Seco F, Rovira M, Giménez J, Cervantes G, Martí V, de Pablo J (2009) Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Nucl Mater 385:474–478CrossRefGoogle Scholar
  45. Sartandel SJ, Bara SV, Chinnaesakki S, Tripathi RM, Puranik VD (2012) Measurement of naturally occurring radioactive materials (NORM) in beach sand minerals using HPGe based gamma-ray spectrometry. J Radioanal Nucl Chem 294:447–451CrossRefGoogle Scholar
  46. Selvasekarapandian S, Sivakumar R, Manikandan NM, Meenakshisundaram V, Raghunath VM, Gajendran V (2000) Natural radionuclide distribution in soils of Gudalore, India. Appl Radiat Isot 52:299–306CrossRefGoogle Scholar
  47. Singh HN, Shanker D, Neelakandan VN, Singh VP (2007) Distribution patterns of natural radioactivity and delineation of anomalous radioactive zones using in situ radiation observations in southern Tamil Nadu, India. J Hazard Mater 141:264–272CrossRefGoogle Scholar
  48. Sulieman M, Ibrahim I, Elfaki J, Dafa-Allah M (2015) Origin and distribution of heavy minerals in the surficial and subsurficial sediments of the alluvial Nile River terraces. Open J Soil Sci 5:299–310CrossRefGoogle Scholar
  49. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J Environ Radioact 102:370–377CrossRefGoogle Scholar
  50. Trefethen JM (1950) Classification of sediments. Am J Sci 248:55–62CrossRefGoogle Scholar
  51. UNSCEAR (2000) United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations, New York http://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
  52. UNSCEAR (2008) United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations, New York http://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR.pdf
  53. Xinwei L, Xiaolan Z (2006) Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands park, China. Environ Geol 50:977–982CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • I. Inigo Valan
    • 1
    • 2
  • I. Vijayalakshmi
    • 2
  • R. Mathiyarasu
    • 2
  • S. G. D. Sridhar
    • 3
  • V. Narayanan
    • 4
  • A. Stephen
    • 1
  1. 1.Department of Nuclear Physics, Guindy CampusUniversity of MadrasChennaiIndia
  2. 2.Health, Safety and Environment GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Department of Applied Geology, Guindy CampusUniversity of MadrasChennaiIndia
  4. 4.Department of Inorganic Chemistry, Guindy CampusUniversity of MadrasChennaiIndia

Personalised recommendations