Stabilization of clayey soils with Tunisian phosphogypsum: effect on geotechnical properties

  • Hajer FarroukhEmail author
  • T. Mnif
  • F. Kamoun
  • L. Kamoun
  • F. Bennour
Original Paper


Phosphogypsum and cement have been reported to improve the physicochemical properties of clayey soils. The present study aimed to investigate the behavior of various soils with different particle sizes and chemical and mineralogical compositions in the presence of phosphogypsum and cement mixed at various proportions. These hydraulic binders were assayed on three different soil samples, and their effects were examined using a battery of standardized tests, including the Atterberg limit, uniaxial compressive strength, Californian Bearing Rate (CBR) test, thermogravimetric analysis (TGA), microstructure observation (SEM), and X-ray diffraction tests. The results revealed a significant effect associated with the variation of phosphogypsum content in the soils. Keeping the cement content constant in the mixture, the continuous addition of phosphogypsum was noted to allow shifting the domain of plasticity to the highest water contents, which reduces the sensitivity of the soil to water and to increase the strength of soil. An increase of CBR index with the addition of phosphogypsum and cement is obtained. This treatment could have positively influenced the optimum moisture content and the maximal dry density. The mixture of soil-phosphogypsum and cement could give new forms such as ettringite and hydrate indicators of the improvement of the mechanical properties of the soil. This improvement varies from one soil to another, depending on its granularity and its mineralogy. The mineralogical composition of the soil, particularly kaolinite, amount, and size grading, have direct effects on the physical and mechanical properties of the soils under investigation.


Stabilization Mineralogy Clayey soil Phosphogypsum Cement Geotechnical properties 



The authors would like to thank the “Groupe chimique Tunisien CGT,” Tunisia, for its collaboration. They would also like to express their sincere gratitude to Mr. Anouar Smaoui from the English Language Unit for his constructive language polishing and proofreading services. The writers would also like to thank the reviewers for their constructive comments which have been of immense help for the cause of the manuscript.


  1. Ajam L (2010) Valorisation du phosphogypse dans la brique cuite : Cas des terrils de Sfax (Tunisie). PhD Thesis, National School of Engineers of Tunis, 175pGoogle Scholar
  2. Al-Rawas A, Hago AW, Al-Sarmi H (2005) Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Build Environ 40:681–687CrossRefGoogle Scholar
  3. Brandl H (1981) Altération of soil parameters by stabilization with lime. In: proc of the 10th ICShIFE Stockholm, 587–591Google Scholar
  4. Cabane N (2004) Sols traités à la chaux et aux liants hydrauliques: Contribution à l’identification et à l’analyse des éléments perturbateurs de la stabilisation. PhD Thesis, the National High School of mines of Saint-Etienne, 189pGoogle Scholar
  5. Centre de Recherches Routières ‘CRR’ (2003) Stabilisation des sols pour couches de sous-fondation. Practical Guide, Supplement to the Code of good Practice R 74/04, 16pGoogle Scholar
  6. Chakchouk A (2010) Ajout de l’argile de Tabarka et de Medenine calcinées dans le ciment : Caractérisation et optimisation. PhD Thesis, Faculty of Sciences of Sfax, 147pGoogle Scholar
  7. Croft JB (1964) The processes involved in the lime stabilization of clay soils. In: Proc of Australian road research board 2nd, Part 2: 1169–203Google Scholar
  8. Degirmenci N, Okucu A, Turabi A (2007) Application of phosphogypsum in soil stabilization. Build Environ 42:3393–3398CrossRefGoogle Scholar
  9. Gaweska-Hager I (2004) Comportement à haute température des bétons à haute performance - évolution des principales propriétés mécaniques. PhD Thesis, the National High School of Roads and Bridges and the Polytechnic of Cracovie, 183 pGoogle Scholar
  10. Khelifa M R (2009). Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants. PhD Thesis, University of Constantine and the University of Orléans, 162pGoogle Scholar
  11. Moghal AAB, Obaid AAK, Al-Refeai TO, Al-Shamrani MA (2015) Compressibility and durability characteristics of lime treated expansive semiarid soil. J Test Eval 43:255–263CrossRefGoogle Scholar
  12. Moghal AAB, Chittoori BCS, Basha MB (2016) Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: reliability approach. Roa mater and Pavem des, 20pGoogle Scholar
  13. Moussa D, Crispel JJ, Legrand CL, Thenoz B (1984) Laboratory study of the structure and compatibility of Tunisian phosphogypsum (Sfax) for use in embankment construction. Resour Conserv 11:95–116CrossRefGoogle Scholar
  14. NF P 94–051 03/93: Sols : Reconnaissance et Essais – Détermination des limites d’Atterberg – Limite de liquidité à la coupelle – Limite de plasticité au rouleauGoogle Scholar
  15. NF P 94–057: Sols : Reconnaissance et Essais – Analyse granulométrique des sols – Méthode par sédimentationGoogle Scholar
  16. NF P 94–078: Sols: Norme française du domaine géotechnique: Sols : Reconnaissance et Essais - Indice CBR après immersion -Indice CBR immédiat - Indice Portant Immédiat - Mesure suréchantillon compacté dans le moule CBRGoogle Scholar
  17. NF P 94–093: Sols : Reconnaissance et Essais - Détermination des références de compactage d'un matériau - Essai Proctor normal – Essai Proctor modifiéGoogle Scholar
  18. NF P 94–420: Norme française du domaine géotechnique : Roches – Détermination de la résistance à la compression uniaxialeGoogle Scholar
  19. Sariosseiri F, Muhunthan B (2009) Effect of cement treatment on geotechnical properties of some Washington state soil. Eng Geol 104:119–125CrossRefGoogle Scholar
  20. Sfar H (2004) Etude du phosphogypse de Sfax (Tunisie) en vue de valorisation en technique routière. PhD Thesis, the National School of Engineers of Tunis and the National Institute of Applied Sciences in Toulouse, 240pGoogle Scholar
  21. XP P 94–041 12/95 Sols : Reconnaissance et Essais – Identification granulométrique – Méthode de tamisage par voie humideGoogle Scholar
  22. Zmemla R, Chaurand P, Benjdidia M, Ellech B, Bottero JY (2016) Characterization and pH dependent leaching behavior of Tunisian Phosphogypsum. ASRJETS 24:230–244Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Hajer Farroukh
    • 1
    • 2
    Email author
  • T. Mnif
    • 1
  • F. Kamoun
    • 1
  • L. Kamoun
    • 3
  • F. Bennour
    • 3
  1. 1.Geoglob Laboratory, Faculty of SciencesSfax UniversitySfaxTunisia
  2. 2.Faculty of Sciences of Sfax, Geoglob LaboratoryUniversity of SfaxSfaxTunisia
  3. 3.Department of ResearchTunisian Chemical GroupSfaxTunisia

Personalised recommendations