Utilization of ASTER and OLI data for lithological mapping of Nugrus-Hafafit area, South Eastern Desert of Egypt

  • Ashraf EmamEmail author
  • Zakaria Hamimi
  • Abdelhamid El-Fakharani
  • Ezzat Abdel-Rahman
  • Juan Gomez Barreiro
  • Mohammed Y. Abo-Soliman
S. I. Geology of Africa
Part of the following topical collections:
  1. New Advances and Research Results on the Geology of Africa


Lithological discrimination of Neoproterozoic rocks occupying Nugrus-Hafafit area, South Eastern Desert of Egypt, has been carried out using Operational Land Imager (OLI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors’ imagery data. The applicable processing enhancement techniques include optimum index factor (OIF), band ratioing, principal component analysis (PCA), and minimum noise fraction (MNF) transform. The area comprises varieties of low-grade metamorphosed ophiolitic mélange and island-arc rocks, thrusting over high-grade metamorphic gneissic core complexes, and intruded by syn-, late-, and post-tectonic granitoids. The OLI band ratio 6/7 discriminates clearly the ophiolitic serpentinites-talc-carbonate rocks, while 4/5 ratio image is able to separate between mafic and felsic rocks. Moreover, the ASTER band ratio 6/8 is used to distinguish the amphibole-bearing rocks, including amphibolite and hornblende gneiss. The OLI and ASTER second principal component (PC2) images reflect the contrast spectral behavior of ophiolitic mélange rocks through visible-near-infrared (VNIR) and shortwave (SWIR) regions. The OLI-PC3 shows the ability to delineate the Fe-rich rocks, including amphibolite and metamafics, while ASTER-PC3 is effective for quartz-feldspathic granites and psammitic gneisses. Visual interpretation and integration of processed data with petrography and field investigation resulted in complete differentiation for the different lithologies and creation of a new detailed geological map of Nugrus-Hafafit area.


ASTER and OLI data Lithological mapping Band ratioing PCA and MNF transform Nugrus-Hafafit 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors highly acknowledge the Geology Department, Faculty of Science, Aswan University for allowing the field and microscopic facilities.


  1. Abd El-Naby H, Frisch W, Hegner E (2000) Evolution of the Pan-African Wadi Haimur metamorphic sole, Eastern Desert, Egypt. J Metamorph Geol 18(6):639–651CrossRefGoogle Scholar
  2. Abd El-Naby HA, Frisch W (2002) Origin of the Wadi Haimur–Abu Swayel gneiss belt, South Eastern Desert, Egypt: petrological and geochronological constraints. Precambrian Res 113(3–4):307–322CrossRefGoogle Scholar
  3. Abd El-Naby HA, Frisch W (2006) Geochemical constraints from the Hafafit Metamorphic Complex (HMC): evidence of Neoproterozoic back-arc basin development in the central Eastern Desert of Egypt. J Afr Earth Sci 45(2):173–186CrossRefGoogle Scholar
  4. Abd El-Naby HA, Frisch W, Siebel W (2008) Tectono-metamorphic evolution of the Wadi Hafafit Culmination (central Eastern Desert, Egypt). Implication for Neoproterozoic core complex exhumation in NE Africa. Geol Acta 6(4):0293–0312Google Scholar
  5. Abd El-Wahed MAA (2010) The role of the Najd Fault System in the tectonic evolution of the Hammamat molasse sediments, Eastern Desert, Egypt. Arab J Geosci 3(1):1–26CrossRefGoogle Scholar
  6. Abdel-Khalek ML, Takla MA, Sehim A, Hamimi Z, El Manawi AW (1992) Geology and tectonic evolution of Wadi Beitan area, southeastern Desert, Egypt. Geology of the Arab World. Cairo University:369–394Google Scholar
  7. Abdelsalam MG, Stern RJ (1999) Mineral exploration with satellite remote sensing imagery: examples from the Neoproterozoic Arabian-Nubian Shield. J Afr Earth Sci 28(4):1CrossRefGoogle Scholar
  8. Aboelkhair H, Yoshiki N, Yasushi W, Isao S (2010) Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the Central Eastern Desert of Egypt. J Afr Earth Sci 58(1):141–151CrossRefGoogle Scholar
  9. Abrams M, Hook S, Ramachandran B (2002) ASTER user handbook, version 2. Jet Propuls Lab 4800:135Google Scholar
  10. Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in southern Arizona. Econ Geol 78(4):591–604CrossRefGoogle Scholar
  11. Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56(2–3):75–82CrossRefGoogle Scholar
  12. Amer R, Kusky TM, El Mezayen A (2012) Remote sensing detection of gold related alteration zones in um rus area, central Eastern Desert of Egypt. Adv Space Res 49:121–134CrossRefGoogle Scholar
  13. Asran AM, Emam A, El-Fakharani A (2017) Geology, structure, geochemistry and ASTER-based mapping of Neoproterozoic Gebel El-Delihimmi granites, Central Eastern Desert of Egypt. Lithos 282:358–372CrossRefGoogle Scholar
  14. Asran AM, Kabesh M (2012) Evolution and geochemical studies on a stromatic migmatite-amphibolite association in Hafafit area, Central Eastern Desert, Egypt. J Biol Earth Sci 2(1):17–33Google Scholar
  15. Boardman JW, Green RO (2000) Exploring the spectral variability of the earth as measured by AVIRIS in 1999Google Scholar
  16. Chavez PS, Berlin GL, Sowers LB (1982) Statistical method for selecting landsat MSS. J Appl Photogr Eng 8(1):23–30Google Scholar
  17. Colby JD (1991) Topographic normalization in rugged terrain. Photogramm Eng Remote Sens 57(5):531–537Google Scholar
  18. Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24(21):4233–4240CrossRefGoogle Scholar
  19. Crosta AP, MOORE JM (1989) Geological mapping using Landsat thematic mapper imagery in Almeria Province, South-east Spain. Int J Remote Sens 10(3):505–514CrossRefGoogle Scholar
  20. Drury SA (1993) Image interpretation in geology (No. 551.0285 D796 1993). Chapman and HallGoogle Scholar
  21. Drury SA (2001) Image interpretation in geology. Nelson Thornes Blackwell Science, Cheltenham Malden, p. 290Google Scholar
  22. EGSMA (1997) Geologic map of JABAL HAMATAH QUADRANGLE, Egypt, (scale 1: 250,000). The Egyptian Geological Survey and Mining Authority, Cairo, EgyptGoogle Scholar
  23. El Ramly MF, Greiling R, Kröner A, Rashwan AA (1984) On the tectonic evolution of the Wadi Hafafit area and environs, Eastern Desert of Egypt. Fac. Earth Sci., Univ. Jeddah, Bull 6:113–126Google Scholar
  24. El Ramly MF, Greiling RO, Rashwan AA, Rasmy AH (1993) Explanatory note to accompany the geological and structural maps of Wadi Hafafit area, Eastern Desert of Egypt. Geological Survey of EgyptGoogle Scholar
  25. El-Enen MMA, Abu-Alam TS, Whitehouse MJ, Ali KA, Okrusch M (2016) P–T path and timing of crustal thickening during amalgamation of East and West Gondwana: a case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt. Lithos 263:213–238CrossRefGoogle Scholar
  26. Emam A, Zoheir B, Johnson P (2016) ASTER-based mapping of ophiolitic rocks: examples from the Allaqi–Heiani suture, SE Egypt. Int Geol Rev 58(5):525–539Google Scholar
  27. Faust NL (1989) Image enhancement of “Encyclopedia of Computer Science and Technology”, 20(5), edited by A. Kent and J. G. Williams. New York. Marcel Dekker Inc.Google Scholar
  28. Fowler AR, El Kalioubi B (2002) The Migif–Hafafit gneissic complex of the Egyptian Eastern Desert: fold interference patterns involving multiply deformed sheath folds. Tectonophysics 346(3–4):247–275CrossRefGoogle Scholar
  29. Frei M, Jutz S (1990) Use of thematic mapper data for the detection of gold bearing formations in the Eastern Desert of Egypt. In: Thematic conference on remote sensing for exploration geology, methods, integration, solutions, 7th edn, Calgary, Canada, pp 1157–1172Google Scholar
  30. Fritz H, Wallbrecher E, Khudeir AA, El Ela FA, Dallmeyer DR (1996) Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt). J Afr Earth Sci 23(3):311–329CrossRefGoogle Scholar
  31. Gabr SS, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13CrossRefGoogle Scholar
  32. Gad S (2002) Exploration for mineralized granites in Central Eastern Desert, Egypt, Doctoral dissertation, M. Sc. Thesis, Faculty of Science, Aswan, South Valley University, Egypt, 118pp)Google Scholar
  33. Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11(3):326–335CrossRefGoogle Scholar
  34. Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74CrossRefGoogle Scholar
  35. Greiling RO (1997) Thrust tectonics in crystalline domains: the origin of a gneiss dome. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences 106(4):209–220Google Scholar
  36. Greiling RO, El Ramly MF, El Akhal H, Stern RJ (1988) Tectonic evolution of the northwestern Red Sea margin as related to basement structure. Tectonophysics 153(1–4):179–191CrossRefGoogle Scholar
  37. Hagag W, Moustafa R, Hamimi Z (2018) Neoproterozoic evolution and Najd–related transpressive shear deformations along Nugrus Shear Zone, South Eastern Desert, Egypt (implications from field-structural data and AMS-technique). Geotectonics 52(1):114–133CrossRefGoogle Scholar
  38. Harraz HZ, Hassan AM, Furuyama K (2005) The Wadi Sikait Complex: a fertile post-collisional granite-pegmatite suite, Eastern Desert, Egypt. Ann Geol Surv Egypt 28:1–35Google Scholar
  39. Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said, R. (ed.) The geology of Egypt, Rotterdam: A. A. Balkema, Ch 12: 201–245Google Scholar
  40. Hassan SM, Sadek MF, Greiling RO (2015) Spectral analyses of basement rocks in El-Sibai-Umm Shaddad area, Central Eastern Desert, Egypt using ASTER thermal infrared data. Arab J Geosci 8(9):6853–6865CrossRefGoogle Scholar
  41. Hassan SM, Taha MM, Mohammad AT (2017) Late Neoproterozoic basement rocks of Meatiq area, Central Eastern Desert, Egypt: petrography and remote sensing characterizations. J Afr Earth Sci 131:14–31CrossRefGoogle Scholar
  42. Hussein AA (1990) Mineral deposits of Egypt. In R. Said (Ed.), The geology of Egypt, Rotterdam: A. A. Balkima. Ch 26: 511–566Google Scholar
  43. Ibrahim ME, Saleh GM, Hassan MA, El-Tokhi MM, Rashed MA (2007) Geochemistry of lamprophyres bearing uranium mineralization, Abu Rusheid area, South Eastern Desert, Egypt. The 10th International Mineral, Petroleum and Metallic Engineering Conference Assuit University, 41–55Google Scholar
  44. Ibrahim WS, Mostafa MS, Ibrahim ME, Watanabe K, Soliman FA (2014) Deformation history of Nugrus- Sikiat Belt, South Eastern Desert, Egypt; implication for tectonic environment. Int Res J Geol Mining 4(3):84–100Google Scholar
  45. Kaufmann H (1988) Concepts, processing and results. Int J Remote Sens 9(10–11):1639–1658CrossRefGoogle Scholar
  46. Khudeir AA, Abu El-Rus MA, El-Gaby S, El-Nady O (2006) Geochemical and geochronological studies on the infrastructural rocks of Meatiq and Hafafit core complexes, Eastern Desert, Egypt. Egypt J Geol 50:190–214Google Scholar
  47. Kokaly RF, Clark RN, Swayze GA, Livo KE, Hoefen TM, Pearson NC et al (2017) USGS spectral library version 7 (no. 1035). US Geological SurveyGoogle Scholar
  48. Kröner A, Krüger J, Rashwan AAA (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol Rundsch 83(3):502–513CrossRefGoogle Scholar
  49. Kusky TM, Ramadan TM (2002) Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. J Afr Earth Sci 35(1):107–121CrossRefGoogle Scholar
  50. Liégeois JP, Stern RJ (2010) Sr–Nd isotopes and geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern Desert, Egypt: no evidence for pre-Neoproterozoic crust. J Afr Earth Sci 57(1–2):31–40CrossRefGoogle Scholar
  51. Liu F, Wu X, Sun H, Guo Y (2007) Alteration information extraction by applying synthesis processing techniques to Landsat ETM+ data: case study of Zhaoyuan Gold Mines, Shandong Province, China. J China Univ Geosci 18(1):72–76CrossRefGoogle Scholar
  52. Madani AA, Emam AA (2011) SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, southeastern desert, Egypt. Arab J Geosci 4(1–2):45–52CrossRefGoogle Scholar
  53. Makroum F (2017) Structural interpretation of the Wadi Hafafit culmination: a Pan-African gneissic dome in the central Eastern Desert, Egypt. Lithosphere 9(5):759–773CrossRefGoogle Scholar
  54. Mars JC, Rowan LC (2011) ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 7(1):276–289CrossRefGoogle Scholar
  55. Qiu F, Abdelsalam M, Thakkar P (2006) Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. J Afr Earth Sci 44(2):169–180CrossRefGoogle Scholar
  56. Rajendran S, Nasir S, Kusky TM, Ghulam A, Gabr S, El-Ghali MA (2013) Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geol Rev 53:470–488CrossRefGoogle Scholar
  57. Rasmy AH (1974) Geological and mineralogical study of corundum, anthophyllite, phlogopite and vermiculite from Hafait, Egypt. Ph.D. In: Thesis. Ain Shams Univ., CairoGoogle Scholar
  58. Ren D, Abdelsalam MG (2006) Tracing along-strike structural continuity in the Neoproterozoic Allaqi-Heiani Suture, southern Egypt using principal component analysis (PCA), fast Fourier transform (FFT), and redundant wavelet transform (RWT) of ASTER data. J Afr Earth Sci 44(2):181–195CrossRefGoogle Scholar
  59. Rowan LC, Wetlaufer PH, Goetz AFH, Stewart JH (1976) Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS imagesGoogle Scholar
  60. Sabins FF (1997) Remote sensing strategies for mineral exploration. In: Rencz AE (ed) Remote sensing for the earth sciences. John Wiley & Sons, Inc. , New York, pp 375–447Google Scholar
  61. Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14(3–4):157–183CrossRefGoogle Scholar
  62. Sadek MF, Ali-Bik MW, Hassan SM (2015) Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: geochemical and remote sensing characterization. Arab J Geosci 8(12):10459–10479CrossRefGoogle Scholar
  63. Sadek MF, Ramadan TM, El Leil IA, Salem SM (2006) Using remote sensing technique in lithological discrimination and detection of gold-bearing alteration zones at Wadi Defeit area, southeastern desert, Egypt. In: Remote sensing for environmental monitoring, GIS applications, and geology VI, vol 6366. International Society for Optics and Photonics, 63660HGoogle Scholar
  64. Singh A, Harrison A (1985) Standardized principal components. Int J Remote Sens 6(6):883–896CrossRefGoogle Scholar
  65. Stern RJ (1994) Neoproterozoic (900–550 Ma) arc assembly and continental collision in the East Africa orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351CrossRefGoogle Scholar
  66. Sultan M, Arvidson RE, Sturchio NC (1986) Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology 14(12):995–999CrossRefGoogle Scholar
  67. Sultan M, Arvidson RE, Sturchio NC, Guinness EA (1987) Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geol Soc Am Bull 99(6):748–762CrossRefGoogle Scholar
  68. Tangestani MH, Jaffari L, Vincent RK, Sridhar BM (2011) Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: a case study from Neyriz ophiolite, SW Iran. Remote Sens Environ 115(9):2243–2254CrossRefGoogle Scholar
  69. Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr-e-Babak, SE Iran. Int J Remote Sens 29(10):2833–2850CrossRefGoogle Scholar
  70. Vincent RK (1997) Fundamentals of geological and environmental remote sensing (vol. 366). Prentice Hall, Upper Saddle River, NJGoogle Scholar
  71. Xiong Y, Khan SD, Mahmood K, Sisson VB (2011) Lithological mapping of Bela ophiolite with remote-sensing data. Int J Remote Sens 32(16):4641–4658CrossRefGoogle Scholar
  72. Zanter K (2016) Landsat 8 (L8) data users handbook. Landsat Science Official Website. Available online: (accessed on 20 January 2018)
  73. Zhang X, Pazner M, Duke N (2007) Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J Photogramm Remote Sens 62(4):271–282CrossRefGoogle Scholar
  74. Zoheir B, Emam A (2012) Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. J Afr Earth Sci 66:22–34CrossRefGoogle Scholar
  75. Zoheir B, Emam A (2014) Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi–Heiani belt, Egypt: a case study from the Haimur deposit. J Afr Earth Sci 99:150–164CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Ashraf Emam
    • 1
    Email author
  • Zakaria Hamimi
    • 2
  • Abdelhamid El-Fakharani
    • 1
    • 3
  • Ezzat Abdel-Rahman
    • 1
  • Juan Gomez Barreiro
    • 4
  • Mohammed Y. Abo-Soliman
    • 1
  1. 1.Geology Department, Faculty of ScienceAswan UniversityAswanEgypt
  2. 2.Geology Department, Faculty of ScienceBenha UniversityBenhaEgypt
  3. 3.Department of Structural Geology and Remote Sensing, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Geology DepartmentSalamanca UniversitySalamancaSpain

Personalised recommendations