Advertisement

Mapping and monitoring soil erosion in a watershed in western Algeria

  • Djazia Bouderbala
  • Zahira Souidi
  • Frédéric Donze
  • Mohamed Chikhaoui
  • Laounia Nehal
Original Paper
  • 87 Downloads

Abstract

Fergoug watershed is subject to severe water erosion and land degradation that threaten agricultural sustainability for local populations. Soil loss and degradation by water erosion were estimated using the universal soil loss equation (USLE). The spatial distribution of soil losses was determined using the following parameters: the erosivity factor (R), obtained using climatic data from 12 local stations over a period of 41 years; the land cover factor (C), obtained using LandSat-TM satellite imagery 7 and 8; the erodibility factor (K), estimated from soil particle size analyses; and the topographic factor (LS), obtained from a digital terrain model. The Fergoug watershed is characterized by complex topography, and the topographic factor reached a value of 14.29. The erodibility factor K ranged from 0.08 to 0.38, and high values were recorded for about 20% of the watershed. The rainfall erosivity factor R ranged between 212.32 and 146.73 from east to west. The plant cover factor varied inter- and intra-annually from 2.24 in May 2000 to 0.06 in May 2015. As a result, soil losses varied from 0.35 to 617.66 tons per hectare per year (t/ha/year) in a rainy year, and from 0.27 to 1188.92 t/ha/year in a dry year. The combined effects of the slope angle and the vegetation cover were shown to play a major role in soil losses in this area.

Keywords

Erosion GIS Remote sensing USLE Fergoug watershed North-Western Algeria 

Notes

Acknowledgements

The authors would like to thank Hamimed Abderrahmane, director of LRSBG laboratory in Mascara for the meteorological data and methodology. We also thank the association GFHN for its encouragement (43rd days, Barcelona 2018). Our sincere thanks go to the members of the laboratory of conservative management of water and soil of the Agronomic and Veterinary Institute Hassan II of Rabat, who welcomed us in their laboratory. My best thanks also to Marcel Kuper.

References

  1. Achite M, Touaibia B, Ouillon S (2006) Erosion hydrique en Algérie du Nord: Ampleur, conséquences et Perspectives. In 14th International Soil Conservation Organization Conference. Water Management and Soil Conservation in Semi-Arid Environments. Marrakech, MoroccoGoogle Scholar
  2. Aksoy H, Kavvas ML (2005) A review of hillslope and watershed scale erosion and sediment transport models. Catena 64(2):247–271CrossRefGoogle Scholar
  3. Arnold JG, Williams JR, Srinivasan R, King KW (1996) SWAT: soil and water assessment tool. User’s Manual USDA Agriculture Research Service Grassland Soil and Water Research Laboratory, 808, 190 pGoogle Scholar
  4. Arnoldus HMJ (1980) An approximation of the rainfall factor in the universal soil loss equation. In: De Boodt M, Gabriels D (eds) Assessment of erosion. Wiley, Chichester, pp 127–132Google Scholar
  5. Beasley DB, Huggins LF, Monke A (1980) ANSWERS: a model for watershed planning. Trans ASAE 23(4):938–0944CrossRefGoogle Scholar
  6. Bessaklia H, Ghenim AN, Megnounif A, Martin-Vide J (2018) Spatial variability of concentration and aggressiveness of precipitation in north-east of Algeria. J Water Land Dev 36:3–15.  https://doi.org/10.2478/jwld-2018-0001 CrossRefGoogle Scholar
  7. Bouchetata A, Bouchetata T (2006) Propositions d’aménagement du sous-bassin versant de l’Oued Fergoug (Algérie) fragilisé par des épisodes de sécheresse et soumis à l’érosion hydrique. Sécheresse 17(3):415–424Google Scholar
  8. Buttafuoco G, Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2012) Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environ Earth Sci 66(4):1111–1125CrossRefGoogle Scholar
  9. Cox C, Madramootoo C (1998) Application of geographic information systems in watershed management planning in St. Lucia. Comput Electron Agric 20(3):229–250CrossRefGoogle Scholar
  10. Dabral PP, Baithuri N, Pandey A (2008) Soil erosion assessment in a hilly catchment of north eastern India using USLE, GIS and remote sensing. Water Resour Manag 22(12):1783–1798CrossRefGoogle Scholar
  11. De Vos B, Lettens S, Muys B, Deckers JA (2007) Walkley–Black analysis of forestsoilorganiccarbon: recovery, limitations and uncertainty. Soil Use Manag 23(3):221–229CrossRefGoogle Scholar
  12. Dimoyiannis DG, Tsadilas CD, Valmis S (1998) Factors affecting aggregate instability of Greek agricultural soils. Commun Soil Sci Plant Anal 29(9–10):1239–1251CrossRefGoogle Scholar
  13. Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. John Wiley ISBN: 0-471-17082-8Google Scholar
  14. Duchaufour Ph (2001) Introduction à la Science du Sol. Sol, Végétation Enviromenment. Dunod (Ed) Paris, 331 ppGoogle Scholar
  15. Duiker SW, Flanagan DC, Lal R (2001) Erodibility and infiltration characteristics of five majors soils of south-east Spain. Catena 45:103–121CrossRefGoogle Scholar
  16. Elbouqdaoui K, Ezzine H, Zahraoui M, Rouchdi M, Badraoui M (2006) Évaluation du risque potentiel d’érosion dans le bassin-vers. Sécheresse 17(3):425–431Google Scholar
  17. Erdogan EH, Erpul G, Bayramin I (2007) Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. Environ Monit Assess 131(1):153–161.  https://doi.org/10.1007/s1066100694646 CrossRefGoogle Scholar
  18. Fernandez C, Wu JQ, McCool DK, Stöckle CO (2003) Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. J Soil Water Conserv 58(3):128–136Google Scholar
  19. Foster GR, Lane LJ (1987) User requirements: USDA-Water Erosion Prediction Project (WEPP). NSERL Report No. 1, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN, 43 pGoogle Scholar
  20. Fournier F (1967) La recherche en erosion et conservation des sols dans le continent africain=research on soil erosion and soil conservation in Africa. Sols Africains=African Soils 12(1)Google Scholar
  21. Fraser RH (1999) SEDMOD: a GIS-based delivery model for diffuse source pollutants: New Haven, Conn., Yale University PhD, Thesis, 99 ppGoogle Scholar
  22. García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81(1):1–11CrossRefGoogle Scholar
  23. El Garouani A, Chen H, Lewis L, Tribak A, Abharour M (2008) Cartographie de l'utilisation du sol et de l'érosion nette à partir d'images satellitaires et du sig idrisi au nord-est du Maroc. Télédétection 8(3):193–201Google Scholar
  24. Gee GW, Or D (2002) 2.4 Particle-size analysis. Methods Soil Anal 4(598):255–293Google Scholar
  25. Ghenim AN, Megnounif A (2013) Analyse des précipitations dans le Nord Ouest algérien. Secheresse 24:107–114.  https://doi.org/10.1684/sec.2013.0380 CrossRefGoogle Scholar
  26. Gliz M, Anteur D, Makhlouf M (2014) Impact de l’irrigation avec des eaux Chargees en matieres en suspension Sur la permeabilite du sol cas de la plaine de l’habra (Algerie). Eur Sci J ESJ 10(27)Google Scholar
  27. Gliz M, Remini B, Anteur D, Makhlouf M (2015) Vulnerability of soils in the watershed of Wadi El Hammam to water erosion (Algeria). J Water Land Dev 24(1):3–10CrossRefGoogle Scholar
  28. Goren L, Willett SD, Herman F, Braun J (2014) Coupled numerical–analytical approach to landscape evolution modeling. Earth Surf Process Landf 39(4):522–545CrossRefGoogle Scholar
  29. Guttman NB (1998) Comparing the palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  30. Hrabalikova M, Janeček M (2017) Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil Water Res 12(2):69–77CrossRefGoogle Scholar
  31. Ibrahimi S (2005) Application du 210 Pbexe comme une alternative à l’utilisation du 137 Cs pour l’étude de la redistribution du sol sur des transects cultivés et non cultivés, Bassins versants El Hachef et Raouz, nord du Maroc, Thèse de doctorat en Sciences, Université Abdelmalek Essaadi, Tanger, MarocGoogle Scholar
  32. Issa LK, Lech-Hab KBH, Raissouni A, El Arrim A (2016) Cartographie quantitative du Risqued’Erosion des sols par Approche SIG/USLE au Niveau du Bassin versant Kalaya (Maroc Nord occidental) quantitative mapping of soil Erosion risk using GIS/USLE approach at the Kalaya watershed (North Western Morocco). J Mater Environ Sci 7(8):2778–2795Google Scholar
  33. Kalambukattu J, Kumar S (2017) Modelling soil erosion risk in a mountainous watershed of mid-Himalaya by integrating RUSLE model with GIS. Eur J Soil Sci 6(2):92–105Google Scholar
  34. Karydas CG, Panagos P, Gitas IZ (2014) A classification of water erosion models according to their geospatial characteristics. Int J Digital Earth 7(3):229–250CrossRefGoogle Scholar
  35. Kouli M, Soupios P, Vallianatos F (2008) Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, northwestern Crete. Greece Environ Geol 57(3):483–497.  https://doi.org/10.1007/s0025400813189 CrossRefGoogle Scholar
  36. Lewis LA, Verstraeten G, Zhu H (2005) RUSLE applied in a GIS framework: calculating the LS factor and deriving homogeneous patches for estimating soil loss. Int J Geogr Inf Sci 19(7):809–829CrossRefGoogle Scholar
  37. Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inform 6(3–4):228–241CrossRefGoogle Scholar
  38. Meliho M, Khattabi A, Zine El Abidine A (2016) Etude de la sensibilité à l’érosion hydrique dans le bassin versant de l’Ourika (Haut Atlas, Maroc). First AMRS Congress and 23rd APDR Congress ‘Sustainability of Territories in the Context of Global Changes, pp 189–196Google Scholar
  39. Mesrar H, Sadiki A, Navas A, Faleh A, Quijano L, Chaaouan J (2015) Modélisation de l'érosion hydrique et des facteurs causaux, Cas de l'oued Sahla, Rif Central, Maroc. Z Geomorphol 59(4):495–514CrossRefGoogle Scholar
  40. Mitasova H, Brown WM, Hohmann M, Warren S (2001) Using soil erosion modeling for improved conservation planning: a GIS-based tutorial. http://www4.ncsu.edu/~hmitaso/gmslab/reports/CerlErosionTutorial/denix/denixstart.html
  41. Nielsen DR, Wendroth O (2003) Spatial and temporal statistics: sampling field soils and their vegetation. CatenaVerlag, GMBH, ReiskirchenGoogle Scholar
  42. Onori F, De Bonis P, Grauso S (2006) Soil erosion prediction at the basin scale using the revised universal soil loss equation (RUSLE) in a catchment of Sicily (southern Italy). Environ Geol 50(8):1129–1140CrossRefGoogle Scholar
  43. Pérez-Rodríguez R, Marques MJ, Bienes R (2007) Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Sci Total Environ 378(1–2):166–173CrossRefGoogle Scholar
  44. Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28CrossRefGoogle Scholar
  45. Porta Casanellas J, López-Acevedo Reguerín M, Roquero de Laburu C (2003) Edafología: para la agricultura y el medio ambienteGoogle Scholar
  46. Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF (2012) Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia. Environ Monit Assess 184(2):715–727.  https://doi.org/10.1007/s1066101119968 CrossRefGoogle Scholar
  47. Prasannakumar V, Vijith H, Abinod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geosci Front 3(2):209–215CrossRefGoogle Scholar
  48. Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R-factor in the revised USLE. J Hydrol 157(1–4):287–306CrossRefGoogle Scholar
  49. Renard KG, Foster GR, Laflen JM, McCool DK (1994) The revised universal soil loss equation. In: Lal R (ed) Soil erosion: research methods, soil and water conservation society, Florida, pp 105–124Google Scholar
  50. Renard KG, Meyer LD, Foster GR (1997a) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). United States Department of Agriculture, Agricultural Research Service: Agriculture Handbook, No.703Google Scholar
  51. Renard KG, Foster GR, Weesies GA, DK MC, Yoder DC (1997b) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture handbook, no.703. US Department of Agriculture, Washington DCGoogle Scholar
  52. Roose E (1994) Introduction à la gestion conservatoire de l'eau, de la biomasseet de la fertilité des sols (GCES). Bull Pédol FAO, 70Google Scholar
  53. Sadiki A (2004) Utilisation d’un SIG pour l’évaluation et la cartographie des risques d’érosion par l’Equation Universelle de Perte en Sol dans le Rif oriental (Maroc) : cas du bassin versant de l’Oued Boussouab. Bull Inst Sci Rabat Sci Terre 26:69–79Google Scholar
  54. Sharma A (2010) Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geo-Spat Inf Sci 13(3):201–209CrossRefGoogle Scholar
  55. Sharma A, Tiwari KN, Bhadoria PBS (2011) Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ Monit Assess 173(1–4):789–801.  https://doi.org/10.1007/s1066101014236 CrossRefGoogle Scholar
  56. Souidi Z, Hamimed A, Khalladi M, Donze F (2009) Mapping latent heat flux in the western forest covered regions of Algeria using remote sensing data and a spatialized model. Remote Sens 1(4):795–817CrossRefGoogle Scholar
  57. Taibi S, Meddi M, Souag D, Mahé G (2013) Évolution et régionalisation des précipitations au nord de l’Algérie (1936–2009). Clim Land Surf Chang Hydrol 359:191–197Google Scholar
  58. Tribak A, El Garouani A, Abachour M (2012) Water erosion in tertiary marl series of the oriental Prérif (Morocco): agents, processes and quantitative evaluation. Rev Mar Sci Agron Vét 1:47–52Google Scholar
  59. Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil Erosion Risk Assessment in Europe. EUR 19044 EN. Office for Official Publications of the European Communities, Luxembourg 34 pGoogle Scholar
  60. Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65(1):2–18CrossRefGoogle Scholar
  61. Wall GJ, Coote DR, Pringle EA, Shelton IJ (2002) Équation universelle révisée des pertes de sol pour application au Canada: Manuel pour l’évaluation des pertes de sol causes par l’érosion hydrique au Canada. Direction générale de la recherche, Agriculture et Agroalimentaire, Canada, N. AAC2244F, 11e7 pGoogle Scholar
  62. Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky countains. Guide for selection of practices for soil and water conservation 282, Agric. Handbook, Washington, DCGoogle Scholar
  63. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook no 537, U.S. Department of Agriculture, Washington DCGoogle Scholar
  64. Yoder D, Lown J (1995) The future of RUSLE: inside the new revised universal soil loss equation. J Soil Water Conserv 50(5):484–489Google Scholar
  65. Zhou P, Luukkanen O, Tokola T, Nieminen J (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75(3):319–325CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Laboratory for the Analysis of Biological Systems and GeomaticsUniversity Mustapha Stambouli of MascaraMascaraAlgeria
  2. 2.ISTerreUniversité de Grenoble AlpesGrenoble Cedex 9France
  3. 3.Laboratory of Conservation of Water and SoilsIAVRabatMorocco

Personalised recommendations