Advertisement

Arabian Journal of Geosciences

, 11:569 | Cite as

Geochronological and geochemical constraints on the origin of the Southeast Anatolian ophiolites, Turkey

  • A. Feyzi Bingöl
  • Melahat Beyarslan
  • Yu-Chin Lin
  • Hao-Yang Lee
Original Paper

Abstract

The Southeast Anatolian ophiolites outcropping in the Southeast Anatolian Orogenic Belt (Southeast of Turkey) mark the closure of the southern branch of the Neotethys Ocean associated with the collision between the Arabian Plate and Anatolian microplate. We present new geochemical, zircon U–Pb age, zircon Lu–Hf, and Sr-Nd isotopic data on the Southeast Anatolian Ophiolites to understand their formation ages, magma genesis, and geotectonic implications. The ophiolites, which are related to island arc igneous rocks, consist of mantle peridotites and crustal rocks (less dunite, gabbros, sheeted dykes, massive, and pillow basalts). The flat rare-earth element (REE) patterns, depletion in Nb and Ta, and enrichment in LILEs (Ba, Rb, Th, Sr, Pb) of gabbros suggest close similarities with very low Ti (boninitic) lavas found in the forearc regions. Using laser ablation inductively coupled plasma–mass spectrometry, zircon separated from leucogabbros, diabase dykes, and plagiogranites yield U-Pb ages of 92 and 83 Ma, which are interpreted to represent the formation ages of the ophiolites. The zircons in the gabbros and plagiogranites are dominated by positive εHf(t) values (between +3.1 and + 17.45) with a few negative εHf(t) values. High εHf(t) features are consistent with derivation from Mid-oceanic Ridge Basalt (MORB)-source mantle. The negative εHf(t) values of the zircons suggest the involvement of subducted sedimentary rocks. The southeast Anatolian ophiolites represent an SSZ-type ophiolite and are part of the Late Cretaceous oceanic lithosphere of the southern branch of the Neotethys Ocean that opened during the Late Triassic and closed during the Late Cretaceous.

Keywords

Ophiolite Mantle peridotite Crustal rocks Zircon age Hf isotope 

Notes

Acknowledgements

This study was conducted at Fırat University and has been supported by scientific research projects from Firat University, Turkey (FÜBAP Projects), since 1980 at different times. We thank the authorities of these institutions. We are grateful to Prof. Sun-Lin Chung (Director of the Institute of Earth Sciences, Academia Sinica and Director of Dr. Shen-su Sun Laboratory, National Taiwan University) for their assistance with zircon U–Pb dating and LA–MC–ICPMS zircon Hf isotopic analysis and Sr-Nd isotopic analysis. The authors are greatly appreciated to editor and two reviewers for contributions and recommendations that significantly improved the manuscript.

References

  1. Abbate E, Bortolotti V, Principi G (1980) Apennine ophiolites: a peculiar oceanic crust. In: Rocci G (ed) Tethyan Ophiolites, 1, western area. Ofioliti special issue, pp 59–96Google Scholar
  2. Abily B, Ceuleneer G (2012) The dunitic mantle-crust transition zone in the Oman ophiolite: residue of melt-rock interaction, cumulates from high-MgO melts, or both? Geology 41(1):67–70Google Scholar
  3. Amelin Y, Li C, Valeyev O, Naldrett AJ (2000) Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey’s bay and Mushuau intrusions, Labrador, Canada. Econ Geol 95(4):815–830Google Scholar
  4. Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25Google Scholar
  5. Al-Riyami K, Robertson A, Dixon J, Xenophontos C, (2002) Origin and emplacement of the Late- Cretaceous Baer-Basst ophiolite and its metamorphic sole in NW Syria. Lithos 65:225–260.Google Scholar
  6. Arai S (1994) Characterization of spinel peridotites by olivineespinel composi- tional relationships: review and interpretation. Chem Geol 113:191–204Google Scholar
  7. Bağcı U (2013) The geochemistry and petrology of the Ophiolitic rocks from the Kahramanmaraş region, southern Turkey. Turk J Earth Sci 22:1–27.  https://doi.org/10.3906/yer-1203-1
  8. Bağcı U, Parlak O, Höck V (2005) Whole rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the sourhern Neotethyan Ocean. Mineral Mag 69:53–76Google Scholar
  9. Bağcı U, Parlak O, Hock V (2008) Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite southern Turkey. Turk J Earth Sci 17:43–71Google Scholar
  10. Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystalmorphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353Google Scholar
  11. Beyarslan M (1991) Ispendere (Kale-Malatya) Ofiyolitleri’nin Petrografik Ozellikleri. Firat University, Institute of Science and Technology Master Thesis (unpublished)Google Scholar
  12. Beyarslan M (1996) Kömürhan ophiolite biriminin petrografik ve petrolojik özellikleri. Firat University, Institute of Sci Technol, PhD Thesis (unpublished)Google Scholar
  13. Beyarslan M (2017) Supra-subduction zone magmatism of the Koçali ophiolite, SE Turkey. J Afr Earth Sci 129(2017):390–402Google Scholar
  14. Beyarslan M, Bingol AF (2000) Petrology of a supra-subduction zone ophiolite (Elazığ, Turkey). Can J Earth Sci 37:1411–1424Google Scholar
  15. Beyarslan M, and Bingöl AF 2008 Zircon U-Pb age and geochemical constraints on the origin and tectonic implications of late cretaceous intra-oceanic arc magmatics in the Southeast Anatolian Orogenic Belt (SE-Turkey). J Afr Earth Sci 147:477–497Google Scholar
  16. Beyarslan M, Bingöl AF (2010) Ultramafics and mafic bodies in cumulates of Ispendere and Kömürhan Ophiolites (SE Anatolian Belt, Turkey) Turkish. J Sci Technol 5(1):19–36Google Scholar
  17. Beyarslan M. Bingöl AF, Yıldırım N (2009) Koçali Ofiyolitik Karmaşığı'nın Petrolojik ve Tektonomagmatik Özellikleri (ADIYAMAN), TUBİTAK PROJESİ NO.107Y344Google Scholar
  18. Beyarslan M, Bingöl AF, Rizeli ME (2014) Koçali (Adıyaman) Ofiyolitindeki Manto Peridotitlerinin Jeokimyası (ana oksitler, iz elementler, Platin Grubu Elementler) ve petrolojisi, Project No. MF.12.35Google Scholar
  19. Beyarslan M, and Bingöl AF (2014) Petrology of the Ispendere, Kömürhan and Guleman Ophiolites (Southeast Turkey): Subduction Initiation Rule (SIR) Ophiolites and Arc Related Magmatics. 3rd Annual International Conference on Geological and Earth Sciences, 22-23 September 2014, Singapore, proceedings. pp. 50–59.  https://doi.org/10.5176/2251-3353-GEOS14.31
  20. Beyarslan M, Lin Y-C, Bingöl AF, Chung S-L (2016) Zircon U-Pb age and geochemical constraints on the origin and tectonic implication of Cadomian (Ediacaran-Early Cambrian) magmatism in SE Turkey. J Asian Earth Sci 130:223–238Google Scholar
  21. Bingöl AF (1986) Petrographic and petrologic characteristics of the Guleman ophiolite (Eastern Taurus-Turkey). Geosound 13(14):41–57Google Scholar
  22. Bingöl AF (1994) Çermik Yöresinde (Diyarbakır) Koçali Karmaşığına ait Magma Kayalarının Jeokimyası ve Petrolojisi. Tübitak Yerbilim Derg 3:55–61Google Scholar
  23. Bingöl AF, Beyarslan M (1996) Elazığ Magmatitleri'nin Jeokimyası ve Petrolojisi. In: KTU 30. Yıl Sempozyumu Bildiri Metinleri, pp 208–224. TrabzonGoogle Scholar
  24. Bingöl AF, Beyarslan M, Akgül B, Erdem E (1997) Karanlık Dere (Gölbaşı-Adıyaman) Magmatitlerinin Petrolojisi. S.Ü. Müh., M,m. Fak. 20. Yıl Jeoloji Sempozyumu, Bildirileri, 135–148Google Scholar
  25. Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85Google Scholar
  26. Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1):243–258Google Scholar
  27. Blichert-Toft J, Frey FA, Albarède F (1999) Hf isotope evidence for pelagic sediments in the source of Hawaiin Basalts. Science 285:879–882Google Scholar
  28. Blichert-Toft, J., Albarède, F., Koraprobst J (1999) Lu-Hf isotope systematics of garnet pyroxenites from Beni-Bousera, Morocco: implications for basalt origin. Science, 283:1303–1306Google Scholar
  29. Bloomer SH, Taylor B, Macleod CJ, Stern RJ, Freyer P, Hawkins JW, Johnson L (1995) Early arc volcanism and the ophiolite problem: a perspective from Drilling in the Western Pacific. In: Taylor B, Natland J (Eds.), Active Margins and Marginal Basins of the Western Pacific. Am Geophys Union, Washington D.C., pp. 1–30Google Scholar
  30. Bonatti E, Michael PJ (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91:297–311Google Scholar
  31. Bortolotti V, Marroni M, Pandolfi L, Principi G, Saccani E (2002) Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. J Geol 110:561–576Google Scholar
  32. Bryant CJ, Arculus RJ, Eggins SM (2003) The geochemical evolution of the Izu- Bonin arc system: a perspective from tephras recovered by deep-sea drilling. Geochem Geophys Geosyst 4(11):1094.  https://doi.org/10.1029/2002GC000427 CrossRefGoogle Scholar
  33. Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary Orogens through earth history. In: Geological society, London, special publications, vol 318, pp 1–36Google Scholar
  34. Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151.  https://doi.org/10.1016/S0012-821X(01)00379-X CrossRefGoogle Scholar
  35. Chen C, Su B-X, Uysal I, Avcı E, Zhang P-F, Xiao Y, He Y-S (2015) Iron isotopic constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite, southern Turkey. Chem Geol 417:115–124Google Scholar
  36. Chiu HY, Chung SL, Wu FY, Liu DY, Liang YH, Lin IJ, Iizuka Y, Xie LW, Wang YB, Chu MF (2009) Zircon U - Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics 477:3–19Google Scholar
  37. Cloos H (1993) Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105(6):715–737Google Scholar
  38. Çoğulu E, Delaloye M, Vuagnat M, Wagner JJ (1975) Some geochemical, geochronological and petrophysical data on the ophiolite massif from the Kizil Dagh, Hatay, Turkey. Comptes rendus des SéancedelaSociété dePhysiqueet d'HistoireNaturellede Genève 10:141–150Google Scholar
  39. Coleman RG (1977) Ophiolites. Springer Verlag, New York, p 220Google Scholar
  40. Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogen- esis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites. Unwin Hyman, London, pp 1–49Google Scholar
  41. Dewey JF, Bird J (1971) Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. In: Bird JM (ed) Plate Tectonics: Journal of Geophysical Research, 76 pp 3179–3206Google Scholar
  42. Dilek Y, Delaloye M (1992) Structure of the Kizildag Ophiolite, a slow-spread cretaceous ridge segment north of the Arabian promontory. Geology 20:1–13Google Scholar
  43. Dilek Y, Eddy CA (1992) The Troodos (Cyprus) and Kizildag (S. Turkey) ophiolites as structural models for slow-spreading ridge segments. J Geol 100:305–322Google Scholar
  44. Dilek Y, Flower MFJ (2003) Arch-trench rollback and forearc accretion: a model tem- plate for ophiolites in Albania, Cyprus and Oman. In: Dilek Y, Robinson PT (eds) Ophiolies in earth history. Geological Society of London Special Publication 218. pp 43–68Google Scholar
  45. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411Google Scholar
  46. Dilek Y, Furnes H (2014) Ophiolites and their origins. Elements 10:93–100Google Scholar
  47. Dilek Y, Thy P (1998) Structure, petrology and seafloor spreading tectonics of the Kizildag ophiolite, Turkey. Geol Soc Lond, Spec Publ 148:43–69Google Scholar
  48. Dilek Y, Thy P (2009) Island arc tholeiite to boninitic melt evolution of the cretaceous Kizildag (Turkey) ophiolite: model for multi-stage early arc-forearc magmatism in Tethyan subduction factories. Lithos 113:68–87Google Scholar
  49. Dilek Y, Moores EM, Delaloye M, Karson JA (1991) Amagmatic extension and tectonic denudation in the Kizildag ophiolite, southern Turkey: implications for the evolution of Neotethyan oceanic crust. In: Peters T et al (eds) Ophiolite genesis and evolution of oceanic lithosphere. Kluwer, Dordrecht, pp 487–502Google Scholar
  50. Dilek Y, Furnes H, Shallo M (2007) Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana. Gondwana Res 11:453–475Google Scholar
  51. Dilek Y, Furnes H, Shallo M (2008) Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100:174–209Google Scholar
  52. Dubertret L (1953) Géologie des roches vertes du nord-ouest de la Syrie et du Hatay (Turquie): Notes et Mémoires sur le Moyen-Orient 6, 227 pGoogle Scholar
  53. Erdem E, Bingöl AF (1995) Pütürge (Malatya) Metamorfitlerinin Petrografik Özellikleri. F.Ü.Fen Müh. Bilim. Derg. 7/1, 73-85 (in Turkish).Google Scholar
  54. Erdoğan B (1977) Geology geochemistry and genesis of the sulfide deposits of the Ergani-Maden region SE Turkey. Ph.D. Thesis, University of New Brunswick, CanadaGoogle Scholar
  55. Erendil M (1984) Petrology and structure of the upper crustal units of the Kizildag ophiolite. In: Tekeli O, Göncüoğlu AM (eds) Proceedings of the International Symposium on the Geology of the Taurus Belt, Turkey, Ankara, Turkey, Mineral Res Explor Institute, 269–284Google Scholar
  56. Falloon TJ, Crawford AJ (1991) The petrogenesis of high calcium boninite lavas from the northern Tonga ridge. Earth Planet Sci Lett 102:375–394Google Scholar
  57. Fritz H, Abdelsalam M, Ali K, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson P, Kusky T, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogens: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106Google Scholar
  58. Furnes H, De Wit M, Dilek Y (2014) Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci Front 5:571–603Google Scholar
  59. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346Google Scholar
  60. Godard M, Bosch D, Einaudi F (2006) A MORB source for low-Ti magmatism in the Semail ophiolite. Chem Geol 234:58–78Google Scholar
  61. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC- ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147Google Scholar
  62. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269Google Scholar
  63. Gürsu S, Möller A, Göncüoglu MC, Köksal S, Demircan H, Toksoy Köksal F, Kozlu H, Sunal G (2015) Neoproterozoic continental arc volcanism at the northern edge of the Arabian Plate, SE Turkey. Precambr Res 258:208–233Google Scholar
  64. Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115Google Scholar
  65. Hickey-Vargas R (1989) Boninites and tholeiites from DSDP Site 458, Mariana Fore-arc. In: Crawford AJ (ed) Boninites and Related Rocks. Unwin Hyman, London, pp 339–356Google Scholar
  66. Hiess J, Bennetty VC, Nutman AP, Williams IS (2009) In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchacan rocks, West Greenland: new insights to making old crust. Geochim Cosmochim Acta 73:4489–4516Google Scholar
  67. Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogazawara-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stocking LB et al (eds) Proceedings of the ocean drilling program, scientific results, vol 125. College Station, Texas, pp 445–485Google Scholar
  68. Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: implications for the thermal condition during transition from spreading ridge to arc. Geology 30:899–902Google Scholar
  69. Ishizuka O, Kimura JI, Li YB, Stern RJ, Reagan M, Taylor RN, Ohara Y, Bloomer SH, Ishii T, Hargrove US, Haraguchi S (2006) Early stages in the evolution of Izu–Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250:385–401Google Scholar
  70. Karaoğlan F, Parlak O, Klötzli U, Thöni M, Koller F (2012) U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: implications for the Neotethyan evolution. Geodin Acta 25(3–4):146–161Google Scholar
  71. Karaoğlan F, Parlak O, Klötzli U, Thöni M, Koller F (2013a) U-Pb and Sm-Nd geochronology of the Kızıldağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in southern Neotethys. Geol Mag 150:283–299Google Scholar
  72. Karaoğlan F, Parlak O, Klötzli U, Koller F, Rızaoğlu T (2013b) Age and duration of intra-oceanic arc volcanism built on a suprasubduction zone type oceanic crust in southern Neotethys, SE Anatolia. Geosci Front 4:399–408Google Scholar
  73. Karaoğlan F, Parlak O, Robertson AHF, Thöni M, Klötzli U, Koller F, and Okay Aİ 2013c. Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks andgranitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia. In: Robertson, AHF, Parlak O. and Ünlügenç UC. (eds.) Geological Development of Anatolia and the Easternmost Mediterranean Region. Geol Soc Lond Spec Publ 372:249–272Google Scholar
  74. Karaoğlan F, Parlak O, Hejl E, Neubauer F, Urs KS (2016) The temporal evolution of the Active Margin along the Southeast Anatolian Orogenic Belt (SE Turkey): evidence from U-Pb, Ar-Ar and Fission Track Chronology. Gondwana Res 33:190–208.  https://doi.org/10.1016/j.gr.2015.12.011 CrossRefGoogle Scholar
  75. Kaya A (2016) Tectono-stratigraphic reconstruction of the Keban metamorphites based on new fossil findings, eastern Turkey. J Afr Earth Sci 124:245–257Google Scholar
  76. Kusky TM (ed) (2004) Precambrian ophiolites and related rocks: developments in Precambrian geology, 13. Elsevier, p 748Google Scholar
  77. Lagabrielle Y, Guivel C, Maury RC, Bourgois J, Fourcade S, Martin H (2000) Magmatic– tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model. Tectonophysics 326:255–268Google Scholar
  78. Lee H-Y, Chung S-L, Ji J, Qian Q, Gallet S, Lo C-H, Lee T-Y, Zhang Q (2012) Geochemical and Sr-Nd isotopic constraints on the genesis of the Ceonozoic Linzizong volcanic successions, southern Tibet. J Asian Earth Sci 53(7):96–114Google Scholar
  79. Lin I-J, Chung S-L, Chu C-H, Lee H-Y, Gallet S, Wu G, Ji J, Zhang Y (2012) Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: petrogenesis and tectonic implications. J Asian Earth Sci 53:131–150Google Scholar
  80. Lin K-Y, Wang K-L, Chung S-L, Lizuka Y, Bingöl AF (2016) Suprasubduction zone characteristics of the Guleman Ophiolite, SE Turkey : evidence from Peridotite geochemistry. Abstract. AGU fall meeting, san Fransisco, 12–16 DecemberGoogle Scholar
  81. Maillet P, Ruellan E, Gérard M, Person A, Bellon H, Cotten J, Joron J-LI, Nakada S, Price RC (1995) Tectonics, magmatism, and evolution of the New Ebrides Backarc Troughs (Southwest Pacific). In: Taylor B (ed) Backarc Basins, Tectonics and Magmatism. Plenum Press, New York, pp 177–235Google Scholar
  82. Metcalf RV, Wallin ET, Willse KR, Muller ER (2000) Geology and geochemistry of ophiolitic Trinity terrane, California: evidence of middle Paleozoic depleted supra-subduction zone magmatism in a proto-arc setting: In: Y. Dilek EM, Moores D, Elthon A, Nicolas (eds.). Ophiolitesand Oceanic Crust: New insights from field studies and the oceanic drilling program, Special paper, Vol. 349. Geol Soc Am 403–408Google Scholar
  83. MTA (2008) Geological Map along EAF- Palu Segment (K42-K43). AnkaraGoogle Scholar
  84. Miyashiro A (1975) Classification, characteristics, and origin of ophiolites. J Geol 83:249–281Google Scholar
  85. Nicolas A (1989) Structure of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic Publishing, Dordrecht 367 ppGoogle Scholar
  86. Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ, Taylor RN (1998) High precision Hf isotopic measurements of MORB and OIB by thermal ionization mass spectrometry into the depleted mantle. Chem Geol 149:211–233Google Scholar
  87. Oberhänsli R, Bousquet R, Candan O, Okay A (2012) Dating subduction events in East Anatolia, Turkey. Turk J Earth Sci 21:1–17Google Scholar
  88. Özçelik M (1982) The petrology and geochemistry of volcanic rocks and associated sulphide deposits of the S.E. Anatolian ophioiite belt, near Malatya, Turkey. Ph.D. thesis, University of Durham, 454 pGoogle Scholar
  89. Özgül N, Turş A, €Ozyardımcı N, Şenol M, Bing€ol I, Uysal S (1982) Munzur Dağlarının Jeolojisi. MTA report no: 6995. Ankara, Turkey (in Turkish)Google Scholar
  90. Özkan YZ, Öztunalı Ö (1984) Petrology of the magmatic rocks of Guleman Ophiolite. In: Tekeli O, Göncüoğlu MC (eds) Int. Symposium on the Geology of the Taurus Belt, 285–294Google Scholar
  91. Özkaya I (1978) Ergani-Maden Yöresi Stratigrafisi. Türk Jeol Kur Bült 21:129–139Google Scholar
  92. Parlak O (2006) Geodynamic significance of granitoid magmatism in Southeast Anatolia: geochemical and geochronogical evidence from Göksun-Afşin (Kahramanmaraş, Turkey) region. Int J Earth Sci 95:609–627Google Scholar
  93. Parlak O, Höck V, Kozlu H, Delaloye M (2004) Oceanic crust generation in an island arc tectonic setting, SE Anatolian Orogenic Belt (Turkey). Geol Mag 141:583–603Google Scholar
  94. Parlak O, Rızaoğlu T, Bağcı U, Karaoğlan F, Höck V (2009) Tectonic significance of the geochemistry and petrology of ophiolites in Southeast Anatolia, Turkey. Tectonophysics 473:173–187Google Scholar
  95. Parlak O, Karaoğlan F, Rizaoğlu T, Nurlu N, Bagci U, Höck V, Önal A, Kürüm S, Topak Y (2012) Petrology of the Ispendere (Malatya) ophiolite from the Southeast Anatolia: implications for the late Mesozoic evolution of the southern Neotethyan Ocean. In: Robertson AHF, Parlak O, Ünlügenç U (eds) Geological development of the Anatolian continent and the easternmost Mediterranean region. Geol Soc Lond, Spec Publ, 372, pp 219–247Google Scholar
  96. Parlak O, Karaoğlan F, Rızaoğlu T, Klötzli U, Koller F, Billor Z (2013) U-Pb and 40Ar-39Ar geochronology of the ophiolites and granitoids from the Tauride belt: implications for the evolution of the Inner Tauride suture. J Geodyn 65:22–37Google Scholar
  97. Patchett PJ, Tastumoto M (1981) Lu/Hf in chondrites and definition of a chondritic hafnium growth curve. Lunar Planet Sci XII Part 2:822–824Google Scholar
  98. Pearce JA (2003) Supra-subduction zone ophiolites: the search for modern analogues. Geol Soc Am Spec Pap 373:269–293Google Scholar
  99. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  100. Pearce JA, Robinson PT (2010) The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting. Gondwana Res 18:60–81Google Scholar
  101. Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. Geological Society of London special publication, vol 16, pp 77–89Google Scholar
  102. Pearce JA, Van Der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW, Parkinson UJ (1992) Boninite and harzburgite from leg 125 (Bonin–Mariana forearc): a case study of magma genesis during the initial stages of subduction. Proc Ocean Drill Program Sci Results 125:623–632Google Scholar
  103. Perinçek D, 1978 Çelikhan-Sincik-Koçali (Adıyaman ili) alanının Jeoloji incelemesi ve Petrol Olanaklarının Aras¸ tırılması. Doktora Tezi (unpublished). I.Ü. Fen Fakültesi, p. 212sGoogle Scholar
  104. Perinçek D (1979) The geology of Hazro-Korudağ, Çüngüş -Maden-Ergani-Hazar- Elazığ-Malatya region. In: Guide book, Geological Society of Turkey, Special Publications, 33Google Scholar
  105. Perinçek D, Çelikdemir ME (1979) Geology and petroleum possibilities of Palu- Karabegan- Elazığ- Sivrice-Malatya region (unpublished). TPAO Arşivi Rapor No: 1361Google Scholar
  106. Perinçek D, Kozlu H (1984) Stratigraphy and structural relations of the units in the Af?in-Elbistan-Doğanşehir region (EasternTaurus). In: Tekeli O, Göncüoûlu MC (eds) Geology of the Taurus Belt. Proceedings of International Symposium Pro- ceedings on the Geology of the Taurus Belt Miner Res Ex- plor Inst Turkey, Spec Publ 181—198Google Scholar
  107. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, O’hara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura JI, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geo- chemistry Geophysics Geosystems (G3) 11, Q03X12, 17 pp  https://doi.org/10.1029/2009GC002871 Google Scholar
  108. Rigo de Righi M, Cortesini A (1964) Gravity tectonics in foothills structure belt of Southeast Turkey. Amer Petrol Geol Bull 48(12):1911–1937Google Scholar
  109. Rızaoğlu T, Parlak O, Höck V, İşler F (2006) Nature and significance of late cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. Geol Soc Lond Spec Publ 260:327–350Google Scholar
  110. Rızaoğlu T, Parlak O, Höck V, Koller F, Hames WE, Billor Z (2009) Andean-type active margin formation in the eastern Taurides: geochemical and geochronogical evidence from the Baskil granitoid (Elazığ, SE Turkey). Tectonophysics 473:188–207Google Scholar
  111. Rizeli ME, Beyarslan M, Wang K-L, Bingöl AF (2016) Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting. J Afr Earth Sci 123:392–402Google Scholar
  112. Robertson AHF, Dixon JE (1984) Introduction: aspects of the geological evolution of the eastern Mediterranean. In: Dixon JE, Robertson AHF (eds) The geological evolution of the eastern Mediterranean. Geol. Soc. London, spec. Publ, vol 17. pp 1–74Google Scholar
  113. Robertson AHF, Ünlügenç UC, Inan N, Taşlı K (2004) The Misis–Andırın complex: a mid-tertiary melange related to late-stage subduction of the southern Neotethys in S Turkey. J Asian Earth Sci 22:413–453Google Scholar
  114. Robertson AHF, Ustaömer T, Parlak O, Ünlügenç UC, Taslı K, İnan N (2006) The Berit transect of the Tauride thrust belt, S. Turkey: late cretaceous–early Cenozoic accretionary/collisional processes related to closure of the southern Neotethys. J Asian Earth Sci 27:108–145Google Scholar
  115. Robertson AHF, Parlak O, Rızaoğlu T, Ünlügenç UC, Ustaömer T, Inan N, Taslı K (2007) Late cretaceous-middle tertiary tectonic evolution of the Tauride thrust belt and the evolution of S Neotethys: evidence from SE Anatolia (Elazığ-Maden region). In Deformation of the continental crust: the legacy of Mike Howard. Ries AC, Butler RWH, Graham RH (eds) Geol. Soc. London Spec Publication 272, 231–270Google Scholar
  116. Robertson AHF, Parlak O, Yıldırım N, Dumitrica P, Taşlı K (2015) Late Triassic rifting and Jurassic- Cretaceous passive margin develpment of the Southern Neotethys: evidence from the Adiyaman area, SE Turkey. Int J Earth Sci.  https://doi.org/10.10077/s00531-015-1176-0
  117. Robertson AH, Parlak O, Ustaömer T (2012) Overview of the Palaeozoic-Neogene evolution of Neotethys in the eastern Mediterranean region (southern Turkey, Cyprus, Syria). Pet Geosci 18:381–404Google Scholar
  118. Saccani E (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci Front 6:481–501Google Scholar
  119. Saccani E, Photiades A (2005) Petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic mélanges. Island Arc 14:494–516Google Scholar
  120. Saccani E, Beccaluva L, Photiades A, Zeda O (2011) Petrogenesis and tectonomagmatic significance of basalts and mantle peridotites from the Albaniane- Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the neo-Tethys in the Dinaride sector. Lithos 124:227–242.  https://doi.org/10.1016/j.lithos.2010.10.009 CrossRefGoogle Scholar
  121. Santosh M, Maruyama S, Yamamoto S (2009) The making and breaking super- continents: some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res 15:324–341 (this issue).  https://doi.org/10.1016/j.gr.2008.11.004 CrossRefGoogle Scholar
  122. Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687Google Scholar
  123. Selçuk H (1981) Étude géologique de la partie méridionale du Hatay (Turquie). Thèse de Doctorat, Université de Genève, Suisse (unpublished)Google Scholar
  124. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241Google Scholar
  125. Shafaii Moghadama H, Stern RJ (2015) Ophiolites of Iran: keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites. J Asian Earth Sci 100:31–59Google Scholar
  126. Shao W-Y, Chung S-L, Chen W-S, Lee H-Y, Xie L (2015) Old continental zircons from a young oceanic arc, eastern Taiwan: implications for Luzon subduction initiation and Asian accretionary orogeny. Geology 43:479–482Google Scholar
  127. Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118Google Scholar
  128. Shervais JW (2001) Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochem Geophys Geosyst 2:2000GC000080Google Scholar
  129. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic east African orogeny-implications for the consolidation of Gondwana. Annu Rev Earth Planet Sci 22:319–351Google Scholar
  130. Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292Google Scholar
  131. Stern RJ, Bloomer SH (1992) Subduction zone infancy; examples from the Eocene Izu–Bonin–Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636Google Scholar
  132. Stern RJ, Reagan M, Ishizuka O, Ohara Y, Whattam S (2012) To understand subduction initiation, study forearc crust; to understand forearc crust, study ophiolites. Lithosphere 4:469e483Google Scholar
  133. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Oceanic Basins. Geol. Soc., pp. 313-345. Spec. Publ., 42Google Scholar
  134. Tekeli O, Erendil M (1984) Geology and petrology of the Kızıldağ Ophiolite (Hatay). In: Tekeli O, Göncüoğlu MC (eds) Int. Symposium on the Geology of the Taurus Belt. MTA Publ, New York, pp 127–147Google Scholar
  135. Unrug R (1996) The assembly of Gondwanaland. Episodes 19:11–20Google Scholar
  136. Uysal E, Ersoy EY, Karsli O, Dilek Y, Sadiklar MB, Ottely CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ typemantle peridotites in a neo-Tethyan Ophiolite in SW Turkey: constraints frommineral composition, whole-rock geochem- istry (major–trace–REE–PGE), and re–Os isotope systematics. Lithos 132–133:50–69Google Scholar
  137. Uzunçimen S, Tekin UK, Bedi Y, Perinçek D, Varol E, Soycan H (2011) Discovery of the late Triassic (middle Carnian–Rhae- tian) radiolarians in the volcano-sedimentary sequences of the Koçali complex, SE Turkey: correlation with the other Tauride units. J Asian Earth Sci 40:180–200Google Scholar
  138. Varol E, Bedi Y, Tekin UK, Uzunçimen S (2011) Geochemical and petrological characteristics of late Triassic basic volcanic rocks from the Kocali complex, SE Turkey: implications for the Triassic evolution of southern Tethys. Ofioliti 36(1):101–115Google Scholar
  139. Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556Google Scholar
  140. Vuagnat M, Çogulu E (1967) Quelques reflextions sur le massif basique–ultrabasique du Kızıldağ, Hatay, Turquie. Comptes rendus de la Société de Physique et d'Histoire Naturelle de Genève 2(3):210–216Google Scholar
  141. Whattam SA, Stern RJ (2011) The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs and subduction. Contrib Mineral Petrol 162:1031–1045.  https://doi.org/10.1007/s00410-011-0638-z CrossRefGoogle Scholar
  142. Woodhead JD, Johnson RW (1993) Isotopic and trace element profiles across the New Britain island arc, Papua New Guinea. Contrib Mineral Petrol 113:479–491Google Scholar
  143. Wu FY, Walker RJ, Yang YH, Yuan HL, Yang JH (2006) The chemical–temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta 70:5013–5034Google Scholar
  144. Wu Y-B, Zheng Y-F, Zhang Z-F, Zhao F-Y, Wu F-Y, Liu X-M (2007) Zircon U-Pb ages and Hf isotope compositions of migmatite from the north Dabie terrane in China: constraints on partialmelting. J Metamorph Geol 25:991–1009Google Scholar
  145. Yazgan E, Chessex R (1991) Geology and tectonic evolution of the southeastern Taurides in the region of Malatya. Türkiye Petrol JeologlarP Derneği Bületini 3(1):1–42Google Scholar
  146. Yılmaz Y (1993) New evidence and model on the evolution of the southeast Anatolian orogen. Geol Soc Am Bull 105:251–271Google Scholar
  147. Yılmaz Y, Yigitbaş E (1991) The different ophiolitic-metamorphic assemblages of S.E. Anatolia and their significance in the geological evolution of Region: 8th Petroleum Congress of Turkey, Geology Proceedings, Ankara, Turkey, Turkish Association of Petroleum Geologists, 128–140Google Scholar
  148. Zheng JP, Griffin WL, O'Reilly SY, Lu F, Wang C, Zhang M, Wang F, Li H (2004) 3.6 Ga lower crust in Central China: new evidence on the assembly of North China craton. Geology 32:229–232Google Scholar
  149. Zheng JP, Griffin WL, O'Reilly SY, Zhang M, Pearson NJ, Pan YM (2006) Widespread Archean basement beneath the Yangtze Craton. Geology 34:417–420Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • A. Feyzi Bingöl
    • 1
  • Melahat Beyarslan
    • 1
  • Yu-Chin Lin
    • 2
  • Hao-Yang Lee
    • 3
  1. 1.Fırat University, Department of Geological EngineeringElazığTurkey
  2. 2.Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan
  3. 3.Institute of Earth SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations