Advertisement

Geochemical features of the Menteşe Formation dolostones (Rhaetian) in the Karacahisar-Kasımlar area (Isparta-Turkey)

  • Ali Müjdat Özkan
  • Salih Dinç
Original Paper
  • 53 Downloads

Abstract

The purpose of this study is to determine the geochemical characteristics of the Menteşe dolostones (Rhaetian) in the west Taurus Mountains, Turkey. The isotope characteristics of the Menteşe dolostones show a variation in the δ18O values of the dolomites between + 1.35 and − 2.72‰ (VPDB) and a variation in the δ13C values of the dolomites between + 1.6 and + 3.33‰ (VPDB). Most of the Menteşe dolostone samples have positive oxygen isotope values; others have weak negative isotope values, which indicate early diagenetic development. In addition, oxygen, carbon, and strontium isotopes and trace element analyses suggest that these dolostones were probably resulted from insignificant recrystallizaion process than chemically similar fluids. Furthermore, Mn/Sr values of the Menteşe dolostones indicate that there is no significant diagenetic alteration. The total REE contents of the Menteşe Formation dolostones display a strong positive correlation with Si, Al, Fe, K, Ti, Ba, Rb and negative correlation with Mg, hence REE content is associated with in the first degree titanium-bearing minerals (probably sphene, rutile, anatase), second degree phosphate (apatite), and barium and rubidium-bearing minerals (probably barite). Ce anomalies versus Nd concentrations of the Menteşe dolostone samples indicate that these dolostones are formed in an anoxic environment. In addition, the K/Rb ratios of the Menteşe dolostones are not exposed to any metamorphism and indicate some diagenetic alteration. Calculated temperature values using δ18O values of the Menteşe dolostones yield precipitation temperatures of 17 to 42 °C, and suggest burial depths of 67 to 900 m. Sources of magnesium for dolomitization of the Menteşe Formation carbonates were most likely fluids from seawater and/or diagenetic brines (slightly modified seawater). The Menteşe dolostones formed as early diagenetic (Rhaetian to Cenomanian) in shallow burial areas at lower temperatures than seawater and/or diagenetic brines (slightly modified seawater).

Keywords

Shallow burial Isotope Sea water Low temperature West Taurides 

Notes

Acknowledgements

The research was funded by Selcuk University Scientific Research Fund (BAP) as part of Project 07101020. We thank the Research Fund of Selcuk University.

Supplementary material

12517_2018_3802_MOESM1_ESM.docx (4 mb)
Fig. S1 Kasımlar measured stratigraphic section (A) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S2. Kuyucak measured stratigraphic section (B) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S3. Köseköy measured stratigraphic section (C) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S4. Menteşe measured stratigraphic section (D) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S5. Belence measured stratigraphic section (E) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S6. Karacahisar measured stratigraphic section (F) displaying lithofacies characteristics, dolostone types, and geochemical features of the Menteşe Formation in the study area. Fig. S7. Plot of SiO2, Al2O3, Fe2O3, K2O, TiO2, MgO, CaO (%), and Rb (ppm) versus total rare earth element (ppm) concentration for dolostones. df1: red, df2: green, df3: blue, df4: purple. Fig. S8. According to facies comparison of isotope values. Fig. S9. Cross plot of 87Sr/86Sr and Mn/Sr concentration display a negative correlation, and is not indicative or slightly of diagenetic alteration. Sr concentrations are low (below 250 ppm) for all samples (except for one sample), and Mn/Sr values are <2 in all of samples. Fig. S10. Ce/Ce* versus Pr/Pr* diagram (after Bau and Dulski 1996) of the Menteşe dolostone samples. Field I: no anomaly; field IIA: positive La anomaly, no Ce anomaly; field. IIB: negative La anomaly, no Ce anomaly; field IIIA: positive Ce anomaly; field IIIB: negative Ce anomaly (Tostevin et al. 2016). df1: red, df2: green, df3: blue, df4: purple. Fig. S11. a) Ce/Ce* anomaly versus Nd concentration (after Ge et al. 2010) of the Menteşe dolostone samples. df1: red, df2: green, df3: blue, df4: purple. Fig. S12. a Diagenetic influence on Ce/Ce* versus (La/Sm)N within the Menteşe dolostones. b Diagenetic influence on Ce/Ce* versus (Dy/Sm)N within the Menteşe dolostones. c Diagenetic influence on Ce/Ce* versus TREE within the Menteşe dolostones. df1: red, df2: green, df3: blue, df4: purple. (DOCX 4121 kb)

References

  1. Algeo TJ, Tribovillard N (2009) Environmental analysis of paleoceanographic systems based on molybdenum-uranium Covariation. Chem Geol 268:211–225CrossRefGoogle Scholar
  2. Allan JR, Wiggins WD (1993) Dolomite reservoirs-geochemical techniques for evaluating origin and distribution. AAPG Cont. Edu. Course Notes Ser. 36:129 pGoogle Scholar
  3. Armstrong-Altrin JS, Machain-Castillo ML (2016) Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. J S Am Earth Sci 71:182–200CrossRefGoogle Scholar
  4. Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramasamy S (2003) Geochemistry of Late Miocene Kudankulam Limestones, South India. Int Geol Rev 45:16–26CrossRefGoogle Scholar
  5. Armstrong-Altrin JS, Yong IL, Surendra PV, Worden RH (2009) Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam formation, southern India: implications for paleoenvironment and diagenesis. Chem Erde - Geochem 69(1):45–60CrossRefGoogle Scholar
  6. Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodríguez JL (2011) Petrography and stable isotope geochemistry of the Cretaceous El Abra limestones (Actopan), Mexico: implication on diagenesis. J Geol Soc India 77:349–359CrossRefGoogle Scholar
  7. Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Carranza-Edwards A, Garcia D, Eby N, Balaram V, Cruz-Ortiz NL (2012) Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chem Erde/Geochem 72:345–362Google Scholar
  8. Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosales-Hoz L, Lee YI, Balaram V, Cruz-Martinez A, Avila-Ramirez G (2013) Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Compt Rendus Geosci 345(4):185–202CrossRefGoogle Scholar
  9. Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza JA, Ruíz-Fernández AC (2015a) Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Cont Shelf Res 95:15–26CrossRefGoogle Scholar
  10. Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 64:199–216CrossRefGoogle Scholar
  11. Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Trejo-Ramírez E (2017) Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance, and tectonic setting. Geol J 52(4):559–582CrossRefGoogle Scholar
  12. Armstrong-Altrin JS, Ramos-Vázquez MA, Zavala-León AC, Montiel-García PC (2018) Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geol J.  https://doi.org/10.1002/gj.3122
  13. Ayyıldız T, Tekin E, Satır M (2004) Water circulation near the mixed–water and microbiologic activity of the mesozoic dolomite sequence, an example from the central Taurus, Turkey. Carbonates Evaporites 19(2):107–117CrossRefGoogle Scholar
  14. Banner JL (1995) Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 42:805–824CrossRefGoogle Scholar
  15. Banner JL, Hanson GN, Meyers WJ (1988) Water-rock interaction history of regionally extensive dolomites of the Burlington-Keokuk formation (Mississippian): isotopic evidence, in: sedimentology and geochemistry of dolostones (eds. Shukla V, Baker PA). Soc Econ Paleontol Mineral Spec Publ 43:97–114Google Scholar
  16. Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup. South Africa Precambrian Res 79:37–55CrossRefGoogle Scholar
  17. Bauernhofer AH, Hauzenberger CA, Wallbrecher E, Muhongo S, Hoinkes G, Mogessie A, Opiyo-Akech N, Tenczer V (2009) Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African Subduction. Int J Earth Sci 98:1809–1834CrossRefGoogle Scholar
  18. Bian YY, Lin ZJ, Feng D, Chen DF (2012) Rare earth elements of seep carbonates and using them to trace redox variation at seep sites. J Trop Oceanogr 31(5):37–44Google Scholar
  19. Birgel D, Feng D, Roberts HH, Peckmann J (2011) Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chem Geol 285:82–96CrossRefGoogle Scholar
  20. Bozcu A (1996) Kasımlar (Sütçüler-Isparta) yöresinde yeralan Mesozoyik yaşlı denizel tortulların jeolojisi, petrografisi ve organik jeokimyasal yöntemlerle incelenmesi, S.D.Ü. Fen Bilimleri Enstitüsü, Doktora Tezi 135 pGoogle Scholar
  21. Brand U, Veizer J (1980) Chemical diagenesis of multicomponent carbonate system-2: stable ısotopes. Jour Sedim Petrol 51:987–997Google Scholar
  22. Budd DA (1997) Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Sci Rev 42:1–47CrossRefGoogle Scholar
  23. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson NF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  24. Carballo JD, Land LS, Miser DE (1987) Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida. J Sediment Petrol 57:153–165Google Scholar
  25. Chang H, Singer JH, Seaman JC (2012) In situ chromium (VI) reduction using iron (II) solutions: modelling dynamic geochemical gradients. Vadose Zone J 11(2).  https://doi.org/10.2136/vzj2011.0172 CrossRefGoogle Scholar
  26. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results form surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  27. Degens ET, Williams EG, Keith ML (1957) Environmental studies of Carbinoferous sediments. Part I: Geochemical criteria for differentiating marine and fresh-water shales. Bull. Amer. Assoc. Petrol. Geol 41:2427Google Scholar
  28. Degens ET, Williams EG, Keith ML (1958) Environmental studies of carboniferous sediments. Part II: Application of geochemical criteria. Bull Amer Assoc Petrol Geol 42:981–997Google Scholar
  29. Drury SA (1978) REE distributions in a high-grade Archean gneiss complex in Scotland: implications for the genesis of ancient sialic crust. Precambrian Res 7:237–257CrossRefGoogle Scholar
  30. Duggan JP (2004) Burial dolomites at Swan Hills Simonette Reef, West Central Alberta Basin. Can. Soc. Petrol. Geol. 2004 Dolomite Conference 29 pGoogle Scholar
  31. Dumont JF, Kerey E (1975) Eğridir Gölü güneyinin temel jeolojik etüdü. Türkiye Jeoloji Kurultayı Bülteni 18(2):169–174Google Scholar
  32. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219CrossRefGoogle Scholar
  33. Eren M, Yeşilot-Kaplan M, Kadir S (2007) Petrography, geochemistry and origin of lower Liassic dolomites in the Aydıncık area, Mersin. Southern Turkey Turkish J Earth Sci 16:339–362Google Scholar
  34. Faure, G (1986) Principles of Isotope Geology. Wiley New York 589 pGoogle Scholar
  35. Faure G, Assereto R, Tremba EL (1978) Strontium isotope composition of marine carbonates of Middle Traissic to Early Jurassic age, Lombardic alps, Italy. Sedimentology 25:523–543CrossRefGoogle Scholar
  36. Feng D, Chen DF, Roberts HH (2009) Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol 26:1190–1198CrossRefGoogle Scholar
  37. Fraga LMS, Soraya CN, Uhlein A, Sial AN, Pimentel MM, Horn AH (2014) C-, Sr-isotope stratigraphy of carbonate rocks from the southern Espinhaço ridge, Minas Gerais, southeastern Brazil. An Acad Bras Cienc 86:633–648CrossRefGoogle Scholar
  38. Friedman GM (1969) Trace elements as possible environmental indicators in carbonate sediments, (Friedman GM ed.) depositional environments in carbonate rocks. Soc Econ Paleont Mineral Spec Publ 14:193–200Google Scholar
  39. Fritz P, Smith DGW (1970) The isotopic composition of secondary dolomite. Geochim Cosmoc Acta 34:1161–1173CrossRefGoogle Scholar
  40. Gao G, Land LS (1991) Early Ordovician cool creek dolomite, middle Arbuckle group, Slick Hills, SW Oklahoma, USA: origin and motification. J Sediment. Petrol. 61:161–173CrossRefGoogle Scholar
  41. Gaswirth SB, Budd DA, Farmer GL (2007) The role and impact of freshwater-seawater mixing zones in the maturation of regional dolomite bodies within the proto Floridan aquifer, USA. Sedimentology 54:1065–1092CrossRefGoogle Scholar
  42. Ge L, Jiang SY, Swennen R, Yang T, Yang JH, Wu NY, Liu J, Chen DH (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277:21–30CrossRefGoogle Scholar
  43. van Geldern R, Joachimski MM, Day J, Jansen U, Alvarez F, Yolkin EA, Ma X-P (2006) Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr Palaeoclimatol Palaeoecol 240:47–67CrossRefGoogle Scholar
  44. Gill IP, Moore CH, Aharon P (1995) Evaporitic mixed water dolomitization St Corix. USVI J Sediment Res 65:591–604Google Scholar
  45. Gregg JM, Howard SA, Mazzullo SJ (1992) Early diagenetic recrystallization of Holocene (<3000 years old) peritidal dolomites, Ambergris Cay, Belize. Sedimentology 39:143–160CrossRefGoogle Scholar
  46. Hardie LA (1987) Dolomitization: a critical view of some current views. J Sediment Petrol 57:166–183CrossRefGoogle Scholar
  47. Haskin LA, Haskin MA, Frey FA, Wildman TR (1968) Relative and absolute terrestrial abundances of the rare earth. (N. Ahrens LN ed.), origin and distribution of the elements. Pergamon, New York, 889-912CrossRefGoogle Scholar
  48. Hatton OJ, Davidson GJ (2004) Soldiers cap group iron- formations, Mt Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Aust J Earth Sci 51:85–108CrossRefGoogle Scholar
  49. Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277:126–136CrossRefGoogle Scholar
  50. Hornung T (2005) Palaeoclimate background and stratigraphic evidence of Late Norian/Early Rhaetian polyphase synsedimentary tectonics in the Hallstatt Limestones of Berchtesgaden (Rappoltstein, southern Germany). Aust J Earth Sci 98:106–119Google Scholar
  51. Hua G, Yuansheng D, Lian Z, Jianghai Y, Hu H (2013) Trace and rare earth elemental geochemistry of carbonate succession in the middle Gaoyuzhuang formation, Pingquan section: implications for early Mesoproterozoic ocean redox conditions. J Paleography 2:209–221Google Scholar
  52. Irwin H (1980) Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge of Dorset, England. Sedimentology 27:577–591CrossRefGoogle Scholar
  53. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129CrossRefGoogle Scholar
  54. Kaczmarek SE, Sibley DF (2011) On the evolution of dolomite stoichiometry and cation order during high temperature synthesis experiments; an alternative model for the geochemical evolution of natural dolomites. Sediment Geol 240:30–40CrossRefGoogle Scholar
  55. Khan KF, Khan SA, Dar SA, Husain Z (2012) Geochemistry of phosphorite deposits around Hirapur Mardeora area in Chhatarpur and Sagar districts, Madhya Pradesh, India. J Geol Mining Res 4:51–64Google Scholar
  56. Kırmacı MZ (2013) Origin of dolomite in the late Jurassic platform carbonates, Bolkar Mountains, central Taurides, Turkey: petrographic and geochemical evidence. Chem Erde-Geochem 73:383–398CrossRefGoogle Scholar
  57. Kırmacı MZ, Akdağ K (2005) Origin of dolomite in the Late Cretaceous-Paleocene limestone turbidites, eastern Oontides, Turkey. Sediment Geol 181:39–57CrossRefGoogle Scholar
  58. Kupecz JA, Land LS (1991) Late-stage dolomitization of the lower Ordovician Ellenburger group, west Texas. J. Sedim. Petrol. 61:551–574Google Scholar
  59. Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Liu YS (2014) U–Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol Rev 56:472–486CrossRefGoogle Scholar
  60. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: concepts and models of dolomitization (Zenger DH, Dunham JB, Ethington RL eds.). Spec Publ Soc Econ Paleont Mineral 28:87–110Google Scholar
  61. Land LS (1985) The origin of massive dolomite. J Geol Educ 33:112–115CrossRefGoogle Scholar
  62. Land LS (1991) Dolomitization of the hope gate formation (North Jamaica) by seawater: Reassesment of mixing-zone dolomite. (Taylor HP, JR O’Neil JR, Kaplan IR eds.) stable isotope geochemistry: a tribute to Samuel Epstein. Geochemical society, Spec Publ 3:121–133Google Scholar
  63. Lee YI, Friedman GM (1987) Deep-burial dolomitization in the lower Ordovician Ellenburger group carbonates in West Texas and southeastern New Mexico. J. Sedim. Petrol. 57:544–557Google Scholar
  64. Lu FH, Meyers MJ (1998) Massive dolomitization of a late Miocene carbonate platform: a case of mixed evaporative brines with meteoric water, Nijar, Spain. Sedimentology 45:263–277CrossRefGoogle Scholar
  65. Lumsden DN, Chimahusky JS (1980) Relationship between dolomite nonstoichiometry and carbonate facies parameters. In: concepts and models of dolomitization (Zenger DH, Dunham JB, Ethington RL eds.). Soc. Econ. Paleontol. Mineral. Spec. Publ. 28:123–137Google Scholar
  66. M’Rabet A (1981) Differentiation of environments of dolostone formation. Lower Cretaceous Cent Tunis Sedimentol 28:331–352Google Scholar
  67. Machel HG (1997) Recrystallization versus neomorphism, and the concept of significant recrystallization in dolomite research. Sediment Geol 113:161–168CrossRefGoogle Scholar
  68. Machel HG (2016) Concepts and models of dolomitization: a critical reappraisal at Pennsylvania State University on March 6:7-63CrossRefGoogle Scholar
  69. Machel HG, Mountjoy EW (1986) Chemistry and environments of dolomitization a reappraisal. Earth-Sci Rev 33:175–222CrossRefGoogle Scholar
  70. Mazzullo SJ (1992) Geochemical and neomorphic alteration of dolomite: a review. Carbonates Evaporites 7:21–37CrossRefGoogle Scholar
  71. Mazzullo SJ, Bischoff WD, Teal CS (1995) Holocene shallowsubtidal dolomitization by near-normal seawater, northern Belize. Geology 23:341–344CrossRefGoogle Scholar
  72. McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study. J Geol 89:185–198CrossRefGoogle Scholar
  73. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of the provenance and sedimentary process. Geochem Miner Rare Earth Elem 21:169–200Google Scholar
  74. McManus J, Berelson WM, Severmann S, Poulson RL, Hammond DE, Klinkhammer GP, Holm C (2006) Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim Cosmochim Acta 70:4643–4662CrossRefGoogle Scholar
  75. Menotti TA (2006) Lower Paleozoic oxygen isotope values from carbonate rocks: primary or diagenetic? The Pennsylvania State University College of earth and mineral sciences Department of Geosciences, Thesis, 40 pGoogle Scholar
  76. Millán MI, Machel HG, Bernasconi SM (2016) Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku formation (Alberta, Canada) with clumped isotopes. J Sediment Res 86:107–112CrossRefGoogle Scholar
  77. Monod O (1977) Recherches geologiques le Taurus occidental au sud de Beyşehir (Turquie); These, Universite Paris XI Orsay 422 pGoogle Scholar
  78. Moore CH (1985) Upper Jurassic subsurface cements: a case history, (Schneidermen N, Harris PM eds.) carbonate cements. Soc. Econ. Paleont. Mineral. Special Publ 36:291–308Google Scholar
  79. Moore CH (1989) Carbonate diagenesis and porosity. Dev Sedimentol 46:46–338Google Scholar
  80. Morrow DW (1982) Diagenesis 2. Dolomite-part 2. Dolomitization models and ancient Dolostones. Geosci Can 9:95–107Google Scholar
  81. Morrow DW (1990) Dolostone-part 2: dolomitization models and ancient dolostones. Geoscience Canada. Reprint Series 4:125–139Google Scholar
  82. Morrow DW (1998) Regional subsurface dolomitization: models and constraints. Geosci Can 25:57–70Google Scholar
  83. Morrow DW (1999) Regional subsurface dolomitization: models and constraints. Geosci Can 25:57–70Google Scholar
  84. Muttoni G, Mazza M, Mosher D, Katz ME, Kent DV, Balini M (2014) A middle–late Triassic (Ladinian–Rhaetian) carbon and oxygen isotope record from the Tethyan Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 399:246–259CrossRefGoogle Scholar
  85. Nagarajan R, Sial AN, Armstrong-Altrin JS, Madhavaraju J, Nagendra R (2008) Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad formation, Bhima Basin, Karnataka, southern India. Rev Mex Cienc Geologicas 25:225–235Google Scholar
  86. Nicolaides S (1997) Marine-derived dolostone in the shallowly buried temperate Port Campbell limestone (Miocene), Otway Basin, Australia. Sedimentology 44:143–157CrossRefGoogle Scholar
  87. Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283CrossRefGoogle Scholar
  88. Özgül N (1997) Stratigraphy of the tectono-stratigraphic units in the region Bozkýr-Hadim-Taşkent (northern central Taurides). Miner Res Explor Inst Turkey (MTA) Bull 119:113–174Google Scholar
  89. Özkan AM, Dinç S (2010) Kasımlar Çevresindeki (Eğirdir Güneydoğusu, Isparta) Üst Triyas Yaşlı Menteşe Dolomitlerinin Sedimantolojik ve Jeokimyasal İncelemesi, Selçuk Üni. Bilimsel Araştırma Projeleri, Konya, Proje No:07101020, 191 pGoogle Scholar
  90. Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Int Jour Earth Sci 88:60–75CrossRefGoogle Scholar
  91. Purser B, Tucker M, Zenger D (1994) Problems, progress and future research concerning dolomites and dolomitization, in: dolomites: a volume in honour of Dolomieu (Purser B, Tucker M, Zenger DH eds.). Spec Publ Int Assoc Sedimentol 21:3–20Google Scholar
  92. Qing H (1998) Petrography and geochemistry of early-stage, fine- and medium-crystalline dolomites in the Middle Devonian Presqu’ile barrier at pine point, Canada. Sedimentology 45:433–446CrossRefGoogle Scholar
  93. Qing H, Mountjoy EW (1988) Multistage dolomitization in rainbow buildups, Middle Devonian Keg River formation, Alberta, Canada. J Sediment Res 59:114–126Google Scholar
  94. Qing H, Bosence DWJ, Rose EPF (2001) Dolomitization by penesaline sea water in early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology 48:153–163CrossRefGoogle Scholar
  95. Qiucheng Y, Mazzullo SJ (1993) Dolomitization of lower Permian platform facies, Wichita Formation, north platform, Midland basin, Texas. Carbonates Evaporites 8:55–70CrossRefGoogle Scholar
  96. Rameil N (2008) Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest cretaceous platform carbonates: a case study from the Jura Mountains (NW Switzerland, E France). Sedimanter Geol 212:70–85CrossRefGoogle Scholar
  97. Ramos-Vázquez M, Armstrong-Altrin JS, Rosales-Hoz L, Machain-Castillo ML, Carranza-Edwards A (2017) Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos river delta, western Gulf of Mexico, Mexico. Arab J Geosci 148:1–19Google Scholar
  98. Rao CP (1989) Geochemistry of the Gordon limestone (Ordovician), Mole Creek. Tasman Austr J Earth Sci 36:65–71CrossRefGoogle Scholar
  99. Reimer TO (1972) Diagenetic reactions in early precambrian graywackes of the Barberton Mountain land (South Africa). Sediment Geol 7:263–282CrossRefGoogle Scholar
  100. Reinhold C (1998) Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in upper jurassic shelf carbonates, eastern Swabian, South Germany. Sediment Geol 71-95Google Scholar
  101. Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high–pressure granulite facies terrains. Geochim Cosmochim Acta 49:1645–1655CrossRefGoogle Scholar
  102. Satterley AK, Marshall DJ, Fairchild IJ (1994) Diagenesis of an Upper Triassic reef complex, Wilde Kirche, Northern Calcareous Alps, Austria. Sedimentology 41:935–950CrossRefGoogle Scholar
  103. Schubel KA, Veblen DR, Malone MJ (2006) Microstructures and textures of experimentally altered Bahamian ooids: implications for reaction mechanisms of dolomitization. Carbonates Evaporites 21:1–13CrossRefGoogle Scholar
  104. Şenel M, Dalkılıç H, Gedik İ, Serdaroğlu M, Bölükbaşı S, Metin S, Esentürk K, Bilgin AZ, Uğuz MF, Korucu M, Özgül N (1992) Eğirdir-Yenisarbademli-Gebiz ve Geriş-Köprülü (Isparta-Antalya) arasında kalan alanların jeolojisi. MTA Derg 9390:1–559Google Scholar
  105. Şenel M, Gedik İ, Dalkılıç H, Serdaroğlu M, Bilgin AZ, Uğuz MF, Bölükbaşı AS, Korucu M, Özgül N (1996) Isparta büklümü doğusunda, otokton ve allokton birimlerin stratigrafisi (Batı Toroslar). MTA Derg 118:111–160Google Scholar
  106. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  107. Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem Geol 17:29–48CrossRefGoogle Scholar
  108. Shields G, Webb G (2004) Has the REE composition of seawater changed over geological time? 204 pCrossRefGoogle Scholar
  109. Sibley DF (1990) Unstable to stable transformations during dolomitization. J Geol 98:739–748CrossRefGoogle Scholar
  110. Sibley DF, Gregg JM (1987) Classification of dolomite rock texture. J Sediment. Petrol. 57:967–975Google Scholar
  111. Sibley DF, Nordeng SH, Borkowski ML (1994) Dolomitization kinetics in hydrothermal bombs and natural settings. J Sediment Res 64:630–637CrossRefGoogle Scholar
  112. Smalley PC, Field D, Lamb RC, Clough PWL (1983) Rare earth, Th,-Hf-Ta and large ion lithophile element variations in metabasites from the Proterozoic amphibolite-granulite transition zone at Arendal, South Norway. Earth Planet Sci Lett 63:446–458CrossRefGoogle Scholar
  113. Sperber CM, Wilkinson BH, Peacor DR (1984) Rock composition, dolomite stoichiometry and rock/water reactions in dolomitic carbonate rocks. J Geol 92:609–692CrossRefGoogle Scholar
  114. Srinivasan K, Walker KR, Goldberg SA (1994) Determining fluid source and possible pathways during burial dolomitization of Maryville limestone (Cambrian), southern Appalachians, USA. Sedimentology 41:293–308CrossRefGoogle Scholar
  115. Sylvestre G, Laure NTE, Djibril KNG, Arlette DS, Cyriel M, Timoléon N, Paul NJ (2017) A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, southwestern Cameroon: constraints from petrography and geochemistry. Ore Geol Rev 80:860–875CrossRefGoogle Scholar
  116. Tapia-Fernandez HJ, Armstrong-Altrin JS, Selvaraj K (2017) Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, southwestern Gulf of Mexico, Mexico. J S Am Earth Sciences, vol 76:346–361CrossRefGoogle Scholar
  117. Taylor SR, Rudnick RL, McLennan SM, Eriksson KA (1986) Rare element patterns in Archean high-grade metasediments and their tectonic significance. Geochim Cosmochim Acta 50:2267–2279CrossRefGoogle Scholar
  118. Tekin E, Sarı A (2002) Microtextural characteristic and origin of dolomites in the Tepearası formation, SW of Beyşehir-Konya, Turkey. Acta Geologica Sinica. Journal of Geol Soc China 76(1):100–109Google Scholar
  119. Theriault F, Hutcheeon I (1987) Dolomitization and calcitization of the Devonian Grosmont formation, northern Alberta. J Sediment Petrol 57:955–966Google Scholar
  120. Thurston PC, Kamber BS, Whitehouse M (2012) Archean cherts in banded iron formation: insight into Neoarchean ocean chemistry and depositional processes. Precambrian Res 214-215:227–257CrossRefGoogle Scholar
  121. Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162CrossRefGoogle Scholar
  122. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scien. Publ, Oxford, 482 pCrossRefGoogle Scholar
  123. Tunaboylu BC (2008) Sedimentary cyclicity and micropaleontological investigations in the Upper Triassic shallow marine carbonate successions (central and western Taurides, Turkey). The Graduate School of Natural and Applied Sciences of Middle East Technical University, PhD Thesis, 181 pGoogle Scholar
  124. Vahrenkamp VC, Swart PK (1994) Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. Spec Publs Int Ass Sediment 21:133–153Google Scholar
  125. Vahrenkamp VC, Swart PK, Ruiz J (1991) Episodic dolomitization of late Cenozoic carbonates in the Bahamas: evidence from strontium isotopes. J Sediment. Petrol. 61:1002–1014Google Scholar
  126. Varol B, Magaritz M (1992) Dolomitization, time boundaries and unconformities: example from the dolostones of the Taurus Moesozic sequence, south-Central Turkey. Sediment Geol 76:117–133CrossRefGoogle Scholar
  127. Varol B, Matsumoto R (2005) Early and late dolomites in the carbonate platform: an example from Middle Devonian carbonates of the Taurus Mountains, South-central Turkey. N.Jb. Miner. Abh 181(2):135–145Google Scholar
  128. Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace-element technique. Soc. Econ. Paleont. Mineral. Short Course 10:3–100Google Scholar
  129. Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395CrossRefGoogle Scholar
  130. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  131. Walker JD, Geissman JW, Bowring SA, Babcock LE (2013) The Geological Society of America geologic time scale. GSA Bull 125:259–272.  https://doi.org/10.1130/B30712.1 CrossRefGoogle Scholar
  132. Wanas HA (2002) Petrography, geochemistry, and primary origin of spherodial dolomite from the Upper Cretaceous/LowerTertiary Maghra El-Bahari formation at Global Ataqa, northwest Gulf of Suez. Egypt Sedim Geol 151:3–4Google Scholar
  133. Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81CrossRefGoogle Scholar
  134. Wen H, Wen L, Chen H, Zheng R, Dang L, Li Y (2014) Geochemical characteristics and diagenetic fluids of dolomite reservoirs in the Huanglong formation, eastern Sichuan Basin, China. Pet Sci 11:52–66CrossRefGoogle Scholar
  135. Yoo CM, Lee YI (1998) Origin and modification of early dolomites in cyclic shallow platform carbonates, Yeongheung formation (Middle Ordovician). Korea Sed Geol 118:141–157CrossRefGoogle Scholar
  136. Zengzhao F, Yongsheng Z, Zhenkui J (1998) Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou group, north China platform. Sediment Geol 118:127–140CrossRefGoogle Scholar
  137. Zhao H (2013) Origin of island dolostones: case study based on Tertiary dolostones from Cayman Brac, British West Indies, University of Alberta, Department of Earth and Atmospheric Sciences, PhD Thesis 207 pGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Department of Geological EngineeringUniversity of SelcukKonyaTurkey
  2. 2.Program of Bore TechnologyUniversity of BatmanBatmanTurkey

Personalised recommendations