Advertisement

Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin

  • Amor Hamad
  • Riheb Hadji
  • Fethi Bâali
  • Besser Houda
  • Belgacem Redhaounia
  • Karim Zighmi
  • Radhia Legrioui
  • Serhane Brahmi
  • Younes Hamed
Original Paper
  • 68 Downloads

Abstract

The Algero-Tunisian transboundry basin contains a multi-layered aquifer referring to two principal productive levels: Zebbag (Cenomanian–Turonian) and Abiod (Campanian–Maastrichian) carbonate formations. The hydrogeological functioning of this karstic system is largely determined by tectonics (Gafsa–Tebessa, Boulabâa faults...). With regard to the growing water demands, groundwater resources in the study area are subject of intense exploitation. Hence, the objective of this study is to refine the understanding of recharge processes in watersheds by a combined isotopic and hydrogeochemistry investigation. The TDS of the sampled waters vary between 10 and 490 mg l−1. It increases from the mountain regions towards the discharge area due the weathering formations, recharge process, and fracturing rate. The isotope compositions from the sampled springs indicate that water composition is influenced by both the southern Mediterranean Sea and Atlantic Ocean precipitations, but the spatial distribution of isotopic composition does not differentiate between the different recharge sources. Karst aquifers are likely fed by direct infiltration of the meteoric water and snow sublimation. Tebessa-Kasserine region contains a number of hydrothermal occurrences in the carbonate formations in the western and the eastern parts. They refer to the low enthalpy fields of Youkous area (Algerian territory) and Boulabâa area (Tunisian territory), respectively. The geochemical and isotopic characterization of these thermal waters indicates a considerable recharge contribution by subsurface flow “hydrothermal upwelling” from the deep hot resources.

Keywords

Hydrogeologic modeling Water resources Fractured carbonate aquifers Groundwater management Tebessa-Kasserine basin 

Notes

Acknowledgments

Many thanks are due to anonymous reviewers who greatly improved an early version of the manuscript. The authors should like also to thank sincerely the numerous people who helped me in the preparation of this paper.

References

  1. Abdelkader R, Larbi D, Rihab H, Fethi B, Chemseddine F, Azzedine H (2012) Geochemical characterization of groundwater from shallow aquifer surrounding Fetzara Lake NE Algeria. Arab J Geosci 5(1):1–13CrossRefGoogle Scholar
  2. Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10(8):194CrossRefGoogle Scholar
  3. Appelo CAJ, Postma D (2004) Geochemistry, groundwater and pollution. CRC press, Boca RatonGoogle Scholar
  4. Ayadi Y, Mokadem N, Besser H, Khelifi F, Harabi S, Hamad A, Boyce A, Laouar R, Hamed Y (2018) Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia). J Afr Earth Sci 137:208–217CrossRefGoogle Scholar
  5. Baali F, Fehdi C, Rouabhia A, Mouici R, Carlier E (2015) Hydrochemistry and isotopic exploration for a karstic aquifer in a semi-arid region: case of Cheria plain, eastern Algeria. Carbonates Evaporites 30(1):99–107CrossRefGoogle Scholar
  6. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  7. Bakalowicz M, Dörfliger N (2005) Ressources en eau du karst: un enjeu pour le bassin méditerranéen. Géosciences-l’eau soutérraine, BRGM 2:26–31Google Scholar
  8. Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20(11):2063–2081CrossRefGoogle Scholar
  9. Besser H, Mokadem N, Redhouania B, Rhimi N, Khlifi F, Ayadi Y, Omar Z, Bouajila A, Hamed Y (2017) GIS-based evaluation of groundwater quality and estimation of soil salinization and land degradation risks in an arid Mediterranean site (SW Tunisia). Arab J Geosci 10(16):350CrossRefGoogle Scholar
  10. Besser H, Mokadem N, Redhaounia B, Hadji R, Hamad A, Hamed Y (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterranean J Environ Integr 3(1):16CrossRefGoogle Scholar
  11. Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the western Mediterranean region at three different time scales. Geophys Res Lett 28(7):1215–1218CrossRefGoogle Scholar
  12. Chemseddine F, Dalila B, Fethi B (2015) Characterization of the main karst aquifers of the Tezbent plateau, Tebessa region, northeast of Algeria, based on hydrogeochemical and isotopic data. Environ Earth Sci 74(1):241–250CrossRefGoogle Scholar
  13. Chidambaram S, Prasanna MV, Karmegam U, Singaraja C, Pethaperumal S, Manivannan R, Anandhan P, Tirumalesh K (2011) Significance of pCO 2 values in determining carbonate chemistry in groundwater of Pondicherry region, India. Front Earth Sci 5(2):197–206CrossRefGoogle Scholar
  14. Clark ID, Fritz P (1997) Tracing the carbon cycle. Environmental Isotopes in Hydrogeology. CRC press, Boca Raton, p 111–134Google Scholar
  15. Dar FA, Perrin J, Ahmed S, Narayana AC, Riotte J (2015) Hydrogeochemical characteristics of karst aquifer from a semi-arid region of southern India and impact of rainfall recharge on groundwater chemistry. Arab J Geosci 8(5):2739–2750CrossRefGoogle Scholar
  16. Demdoum A, Hamed Y, Feki M, Hadji R, Djebbar M (2015) Multi-tracer investigation of groundwater in El Eulma Basin (northwestern Algeria), North Africa. Arab J Geosci 8(5):3321–3333CrossRefGoogle Scholar
  17. Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J Geol 98(5):639–655CrossRefGoogle Scholar
  18. Durov SA (1948) Classification des eaux naturelles et la représentation graphique de leur composition. Doklady Akad Nauk SSSRt 59(1):87–90Google Scholar
  19. El Gayar A, Hamed Y (2017) Climate change and water resources Management in Arab Countries. In: Euro-Mediterranean conference for environmental integration. Springer, Cham, pp. 89-91CrossRefGoogle Scholar
  20. Elbeih SF (2015) An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng J 6(1):1–15CrossRefGoogle Scholar
  21. Falcone RA, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (δ18O‰, δ2H‰, δ13C‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory–Central Italy). J Hydrol 357(3–4):368–388CrossRefGoogle Scholar
  22. Fehdi C, Boudoukha A, Rouabhia A, Salameh E (2011) Origin of groundwater salinity in the Morsott-El Aouinet basin, northeastern Algeria: hydrochemical and environmental isotopes approaches. Desalin Water Treat 36(1–3):1–12CrossRefGoogle Scholar
  23. Ford DC, Williams PW (1989) Karst geomorphology and hydrology, vol 601. Unwin Hyman, LondonCrossRefGoogle Scholar
  24. Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W (2008) Deuterium excess in precipitation of alpine regions–moisture recycling. Isot Environ Health Stud 44(1):61–70CrossRefGoogle Scholar
  25. Gadri L, Hadji R, Zahri F, Benghazi Z, Boumezbeur A, Laid BM, Raїs K (2015) The quarries edges stability in opencast mines: a case study of the Jebel Onk phosphate mine, NE Algeria. Arab J Geosci 8(11):8987–8997CrossRefGoogle Scholar
  26. Grabczak L, Kotarba M (1985) Isotopic composition of the thennal waters in the central part of the Nepal Himalayas. Geothermics 14:567–575CrossRefGoogle Scholar
  27. Hadji R, Limani Y, Boumazbeur AE, Demdoum A, Zighmi K, Zahri F, Chouabi A (2014) Climate change and its influence on shrinkage–swelling clays susceptibility in a semi-arid zone: a case study of Souk Ahras municipality, NE-Algeria. Desalin Water Treat 52(10–12):2057–2072CrossRefGoogle Scholar
  28. Hadji R, Chouabi A, Gadri L, Raïs K, Hamed Y, Boumazbeur A (2016) Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria. Arab J Geosci 9(3):192CrossRefGoogle Scholar
  29. Hadji R, Rais K, Gadri L, Chouabi A, Hamed Y (2017) Slope failure characteristics and slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled Driss and Machroha municipalities, Northeast Algeria. Arab J Sci Eng 42(1):281–300CrossRefGoogle Scholar
  30. Hadji R, Achour Y, Hamed Y (2018) Using GIS and RS for Slope Movement Susceptibility Mapping: Comparing AHP, LI and LR Methods for the Oued Mellah Basin, NE Algeria. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, EMCEI 2017. Advances in science, Technology & Innovation (IEREK interdisciplinary series for sustainable development). Springer, ChamGoogle Scholar
  31. Hamad A, Baali F, Hadji R, Zerrouki H, Besser H, Mokadem N, Legrioui R, Hamed Y (2018) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean J Environ Integr 3(1):7CrossRefGoogle Scholar
  32. Hamed Y, Dassi L, Ahmadi R, Dhia HB (2008) Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia. Hydrol Sci J 53(6):1241–1252CrossRefGoogle Scholar
  33. Hamed Y, Zairi M, Ali W, Dhia HB (2010) Estimation of residence times and recharge area of groundwater in the Moulares mining basin by using carbon and oxygen isotopes (south western Tunisia). J Environ Prot 1(04):466–474CrossRefGoogle Scholar
  34. Hamed Y (2013) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (southwestern Tunisia). Arab J Geosci 6(3):697–710CrossRefGoogle Scholar
  35. Hamed Y, Dhahri F (2013) Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in northwestern Tunisia. J Afr Earth Sci 83:10–24CrossRefGoogle Scholar
  36. Hamed Y, Ahmadi R, Demdoum A, Bouri S, Gargouri I, Dhia HB et al (2014a) Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-southern Tunisia. J Afr Earth Sci 100:418–436CrossRefGoogle Scholar
  37. Hamed Y, Ahmadi R, Hadji R, Mokadem N, Dhia HB, Ali W (2014b) Groundwater evolution of the continental Intercalaire aquifer of southern Tunisia and a part of southern Algeria: use of geochemical and isotopic indicators. Desalin Water Treat 52(10–12):1990–1996CrossRefGoogle Scholar
  38. Hamed Y (2016) L’Or Bleu et les Changements Climatiques en Tunisie. Éditions universitaires européennesGoogle Scholar
  39. Hamed Y, Redhaounia B, Ben Sâad A, Hadji R, Zahri F, Zighmi K (2017a) Hydrothermal waters from karst aquifer: case study of the Trozza basin (Central Tunisia). J Tethys 5:033–044Google Scholar
  40. Hamed Y, Redhaounia B, Sâad AB, Hadji R, Zahri F, El Hidouri B (2017b) Groundwater inrush caused by the fault reactivation and the climate impact in the mining Gafsa Basin (southwestern Tunisia). J Tethys 5(2):154–164Google Scholar
  41. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242CrossRefGoogle Scholar
  42. Hill MC (1990) Preconditioned conjugate-gradient 2 (PCG2), a computer program for solving ground-water flow equations (No. 90–4048). US Geological Survey; Books and Open-File Reports Section, Washington, DCGoogle Scholar
  43. Imbach T (1992) Thermalwässer von Bursa: geologische und hydrogeologische Untersuchungen am Berg Uludag (NW-Türkei) Doctoral dissertation, ETH ZurichGoogle Scholar
  44. Imbach T (1997) Geology of Mount Uludag with emphasis on the genesis of the Bursa thermal waters, Northwest Anatolia, Turkey. Active tectonics of Northwestern Anatolia (The Marmara Poly-Project), Zürich, pp 239–266Google Scholar
  45. Jasmin I, Mallikarjuna P (2011) Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeol J 19(4):729–740CrossRefGoogle Scholar
  46. Jedoui Y, Kallel N, Labeyrie L, Reyss J, Montacer M, Fontugne M (2001) Abrupt climatic variability of the last interglacial (marine isotopic 5e substage) recorded in the coastal sediments of southeastern Tunisia. C R Acad Sci Ser II A Earth Planet Sci 333(11):733–740Google Scholar
  47. Jeelani G, Bhat NA, Shivanna K (2010) Use of δ18O tracer to identify stream and spring origins of a mountainous catchment: a case study from Liddar watershed, western Himalaya, India. J Hydrol 393(3–4):257–264CrossRefGoogle Scholar
  48. Kattan Z (1997) Environmental isotope study of the major karst springs in Damascus limestone aquifer systems: case of the Figeh and Barada springs. J Hydrol 193(1–4):161–182CrossRefGoogle Scholar
  49. Langmuir D (1997) Aqueous environmental. Prentice Hall, Upper Saddle RiverGoogle Scholar
  50. Legrioui R, Baali F, Hamad A, Abdeslam I, Redha M (2017) Water quality at a Karstic aquifer in the region of Tebessa, Northeast-Algeria. Energy Procedia 119:356–366CrossRefGoogle Scholar
  51. Lloyd JW, Heathcote JAA (1985) Natural inorganic hydrochemistry in relation to ground water. Clarendon Press, Oxford 296pGoogle Scholar
  52. Marfia AM, Krishnamurthy RV, Atekwana EA, Panton WF (2004) Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Appl Geochem 19(6):937–946CrossRefGoogle Scholar
  53. Margat J, Treyer S (2004) L’eau des Méditerranéens: situation et perspectives. PNUE-PAM (No. 158). Plan Bleu, Technical Report SeriesGoogle Scholar
  54. Mokadem N, Hamed Y, Hfaid M, Dhia HB (2015) Hydrogeochemical and isotope evidence of groundwater evolution in El Guettar oasis area, Southwest Tunisia. Carbonates Evaporites 30(4):417–437CrossRefGoogle Scholar
  55. Mokadem N, Demdoum A, Hamed Y, Bouri S, Hadji R, Boyce A, Laouar R, Sâad A (2016) Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: northern Gafsa basin–Central Tunisia. J Afr Earth Sci 114:174–191CrossRefGoogle Scholar
  56. Mokadem N, Boughariou E, Mudarra M, Andreo B, Hamed Y, Bouri S (2018) Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: case study of North Gafsa Basin (Central Tunisia). J Afr Earth Sci 141:107–117CrossRefGoogle Scholar
  57. Mouici R, Baali F, Hadji R, Boubaya D, Audra P, Fehdi C et al (2017) Geophysical, geotechnical, and speleologic assessment for karst-sinkhole collapse genesis in cheria plateau (NE Algeria). Min Sci 24:59–71Google Scholar
  58. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21CrossRefGoogle Scholar
  59. Redhaounia B (2016) Contribution of geophysics approaches to the hydro-geological characterization of fractured limestone karst of Amdoun Region (North-Western Tunisia) PHD Thesis. (180 p. in French)Google Scholar
  60. Redhaounia B, Aktarakçi H, Ilondo BO, Gabtni H, Khomsi S, Bédir M (2015) Hydro-geophysical interpretation of fractured and karstified limestones reservoirs: a case study from Amdoun region (NW Tunisia) using electrical resistivity tomography, digital elevation model (DEM) and hydro-geochemical approaches. J Afr Earth Sci 112:328–338CrossRefGoogle Scholar
  61. Redhaounia B, Ilondo BO, Gabtni H, Sami K, Bédir M (2016) Electrical resistivity tomography (ERT) applied to karst carbonate aquifers: case study from Amdoun, northwestern Tunisia. Pure Appl Geophys 173(4):1289–1303CrossRefGoogle Scholar
  62. Rosenthal E (1987) Chemical composition of rainfall and groundwater in recharge areas of the bet Shean-Harod multiple aquifer system, Israel. J Hydrol 89(3–4):329–352CrossRefGoogle Scholar
  63. Stichler W, Schotterer U, Fröhlich K, Ginot P, Kull C, Gäggeler H, Pouyaud B (2001) Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J Geophys Res Atmos 106(D19):22613–22620CrossRefGoogle Scholar
  64. Stuyfzand PJ (1986) A new hydrochemical classification of water types with examples of application to the Netherlands, H20. 19:562–568Google Scholar
  65. Stuyfzand PJ (1993) Hydrochemistry and hydrology of the coastal dune area of the western NetherlandsGoogle Scholar
  66. Valdes D, Dupont JP, Massei N, Laignel B, Rodet J (2006) Investigation of karst hydrodynamics and organization using autocorrelations and T–ΔC curves. J Hydrol 329(3–4):432–443CrossRefGoogle Scholar
  67. Van Wirdum G (1991) Vegetation and hydrology of floating rich-fens. Geert van WirdumGoogle Scholar
  68. Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328(3–4):592–603CrossRefGoogle Scholar
  69. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37(1):1–10CrossRefGoogle Scholar
  70. Wu P, Tang C, Zhu L, Liu C, Cha X, Tao X (2009) Hydrogeochemical characteristics of surface water and groundwater in the karst basin, Southwest China. Hydrol Process 23(14):2012–2022CrossRefGoogle Scholar
  71. Zang H, Zheng X, Qin Z, Jia Z (2015) A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China. Isot Environ Health Stud 51(2):271–284CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Amor Hamad
    • 1
    • 2
    • 3
  • Riheb Hadji
    • 3
    • 4
    • 5
  • Fethi Bâali
    • 3
    • 4
  • Besser Houda
    • 2
    • 3
  • Belgacem Redhaounia
    • 3
    • 6
  • Karim Zighmi
    • 3
    • 4
  • Radhia Legrioui
    • 1
    • 3
  • Serhane Brahmi
    • 1
    • 3
  • Younes Hamed
    • 2
    • 3
    • 7
  1. 1.Water and Environment Laboratory, Department of Earth SciencesTebessa UniversityTebessaAlgeria
  2. 2.Geo-systems, Geo-resources and Geo-environments research unity, Department of Earth Sciences, Faculty of SciencesGabes UniversityZrig EddakhlaniaTunisia
  3. 3.International Association of Water Resources in the Southern Mediterranean BasinGafsaTunisia
  4. 4.Department of Earth SciencesSetif UniversitySetifAlgeria
  5. 5.Earth Sciences DepartmentFarhat Abbas UniversitySetifAlgeria
  6. 6.Water Researches and Technologies Center Borj-Cedria (CERTE)SolimanTunisia
  7. 7.Department of Earth Sciences, Faculty of Sciences of GafsaUniversity of GafsaGafsaTunisia

Personalised recommendations