Identification of hydrogeochemical processes in a volcano-sedimentary aquifer of Ciénega de Chapala in Michoacán, Mexico

  • José Alfredo Ramos-LealEmail author
  • Janete Morán-Ramírez
  • José Teodoro Silva-García
  • Rosa María Fuentes-Rivas
  • Gustavo Cruz-Cárdenas
  • Salvador Ochoa-Estrada
  • Francisco Estrada-Godoy
Original Paper


The present study characterized the hydrogeochemical processes of the aquifer of Ciénega de Chapala in Michoacán, Mexico. The dominant water families contained bicarbonate magnesium and sodium. In the region, water infiltrates into a fractured volcanic environment exposed in the surrounding mountains and is transmitted to the volcano-sedimentary units of the ciénega, where silicate alteration and ion exchange processes occur in the clays of the subsoil. The Gibb diagrams confirm that the main evolutionary processes in the aquifer are rock-water interactions in the local flow and evaporation in the intermediate and regional flows. The molar ratios of HCO3/Na and Ca/Na are congruent with the type of volcano-sedimentary environment present in the area. Ternary mixing processes associated with three end members were also identified and were related to the flow systems in the area. The local flow contributes 77% of water to the system, and the intermediate and regional flows contribute 16% and 7%, respectively.


Hydrogeochemical Groundwater Rock-water interaction Ionic exchange Water mixing 



The authors thank the Potosin Institute of Scientific and Technological Research that supported part of the study. Chemical analyses were performed by the Laboratory of Interdisciplinary Research Center for Integral Regional Development, National Polytechnic Institute, Michoacán.


  1. Allan JF (1985) Sediment depth in the northern Colima graben from 3-D interpretation of gravity. Geofis Int 24(1)Google Scholar
  2. Burdon DJ, Mazloum S (1958) Some chemical types of groundwater from Syria. In Proceedings of the UNESCO symposium, Teheran. UNESCO, Paris (pp. 73–90)Google Scholar
  3. Chebotarev I (1955) Metamorphism of natural waters in the crust of weathering—1. Geochim Cosmochim Acta 8:137–170CrossRefGoogle Scholar
  4. Douglas SA, Ohlstein EH (2000) Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease. Trends Cardiovasc Med 10(6):229–237CrossRefGoogle Scholar
  5. Dixon W, Chiswell B (1992) The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, Southeast Queensland, Australia. J Hydrol 135(1–4):259–274CrossRefGoogle Scholar
  6. Downs, T., 1958, Fossil vertebrates from Lago de Chapala, Jalisco (resumen), en XX Congreso Geológico Internacional, Memorias: México, Universidad Nacional Autónoma de México, Instituto de Geología, 7, 75–77Google Scholar
  7. Durov SA (1948) Natural waters and graphic representation of their composition. In Dokl Akad Nauk SSSR (Vol. 59, No. 3, pp. 87-90)Google Scholar
  8. Garduño Monroy VH, Spinnler J, Ceragioli E (1993) Geological and structural study of the Chapala Rift, state of Jalisco, Mexico. Geofis Int 32(3)Google Scholar
  9. Genereux D; Wood S J; Pringle C M (1996) Chemical mixing model of streamflow generation at La Selva Biological Station , Costa Rica. J Hidrol 199 319–330CrossRefGoogle Scholar
  10. Gómez JB, Aunqué LF, Gimeno MJ (2008) Sensivity and uncertainty analysis of mixing and mass balance calculations whit Standard and PCA-based geochemical codes. Appl Geochem 23:1941–1956CrossRefGoogle Scholar
  11. Laaksoharju M, Skarman C, Skarman E (1999) Multivariate Mixing and mass balance (M3) calculation a new tool for decuding hydrogeochemical information. Appl Geochem 14:861–871CrossRefGoogle Scholar
  12. Laaksoharju M, Gascoyne M, Gurban I (2008) Understanding groundwater chemistry using mixing models. Appl Geochem 23(7):1921–1940CrossRefGoogle Scholar
  13. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179(1–4):129–143CrossRefGoogle Scholar
  14. Mifflin M.D (1988) Region 5, Great Basin, in Back, W., Rosenshein, J.S. and Seaber, P.R. (Eds.), Hydrogeology, Geological Society of America, p.69–78Google Scholar
  15. Pasquare G, Zanchi (1985) Cenozoic volcanism and tectonics in western-central Mexico. Rend. Acad. Naz. Lincei 95:1–9Google Scholar
  16. Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): a geochemical and isotope approach. Environ Earth Sci 63(1):11–30CrossRefGoogle Scholar
  17. Piper AM (1953) A graphic procedure in the geochemical interpretation of water analysis. Washington D.C.: United States Geological Survey. OCLC 37707555. ASIN B0007HRZ36Google Scholar
  18. Ramos-Leal J, Martínez-Ruiz V, Rangel-Méndez J, Alfaro de la Torre M (2007) Hydrogeological and mixing process of waters in aquifers in arid regions: a case study in San Luis Potosí Valley, Mexico. Environ Geol 53:325–337CrossRefGoogle Scholar
  19. Rice KC, Hornberger GM (1998) Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment. Water Resour Res 34(7):1755–1766CrossRefGoogle Scholar
  20. Rosas-Elguera J, Urrutia-Fucugauchi J, Maciel R (1989) Geología del extremo oriental del Graben de Chapala; breve discusión sobre su edad: zonas geotérmicas Ixtlan de Los Hervores-Los Negritos, México: Geotermia-Revista Mexicana de Geoenergía, 5, 3–18Google Scholar
  21. Rosas EJ (1997) Tectónica extensional en el occidente de la faja volcánica transmexicana (Doctoral dissertation, Tesis doctoral, postgrado en Ciencias de la Tierra, Instituto de Geofísica-UNAM)Google Scholar
  22. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • José Alfredo Ramos-Leal
    • 1
    Email author
  • Janete Morán-Ramírez
    • 1
  • José Teodoro Silva-García
    • 2
  • Rosa María Fuentes-Rivas
    • 3
  • Gustavo Cruz-Cárdenas
    • 2
  • Salvador Ochoa-Estrada
    • 2
  • Francisco Estrada-Godoy
    • 2
  1. 1.Applied Geosciences DivisionPotosin Institute of Scientific and Technological Research, C.A. (IPICYT)San Luis PotosíMexico
  2. 2.Interdisciplinary Research Center for Integral Regional DevelopmentNational Polytechnic InstituteJiquilpanMexico
  3. 3.Geography Department, Autonomous University of the State of MexicoCerro de Coatepec, Ciudad UniversitariaTolucaMexico

Personalised recommendations