Advertisement

Comparison of approaches for calculating the threshold velocity for sand movement based on field experiments in Xinjiang, China

  • Chenglong Zhou
  • Qing He
  • Wen Huo
  • Fan Yang
  • Ali Mamtimin
  • Pan Honglin
  • Xinghua Yang
Original Paper
  • 51 Downloads

Abstract

An accurate threshold velocity ut for sand movement is essential for predicting wind erosion events and calculating the magnitude of horizontal sand flux. We compared various approaches for determining ut using data observed during 4–31 July 2009 in the hinterland of Taklimakan Desert. We used the Gaussian time fraction equivalence method developed by Stout with an interval of 1 day to obtain ut values of 3.03–5.62 m/s (the approach of observations through field experiments). The Kurosak (ut50%) method yielded values of 3.71–5.74 m/s (the approach of statistical calculations). The Marticorena and Shao models gave ut values of 4.87–4.90 and 5.82–6.78 m/s, respectively (the approach of model parameterizations). To test the accuracy of these threshold velocities above, we estimated the total horizontal sand flux and the duration of sand saltation. Estimates of the total horizontal sand flux were 1311.9, 1166.4, 1279.9, and 661.6 kg/m for the Stout, Kurosak, Marticorena, and Shao methods, respectively, while the observed value was 732.9 kg/m. The correlation coefficient between observed and estimated values based on the Stout, Kurosak, Marticorena, and Shao methods was 0.75, 0.79, 0.77, and 0.83, respectively. The estimated duration of sand saltation using the ut been as Stout, Kurosak, Marticorena, and Shao was 8211, 6575, 7567, and 3463 min, of which 6208, 5646, 5986, and 3346 min were correct reports, respectively, and the observed value was 7663 min. We discuss the advantages and disadvantages of these methods combining those results above, which can be used to advise researchers to improve the threshold velocity used in future studies.

Keywords

Wind erosion Threshold velocity Horizontal dust flux Taklimakan Desert 

Notes

Funding

This research was funded by the National Natural Science Foundation of China (41405013), flexible talents introducing project of Xinjiang (2017).

References

  1. AI-Dousari A, Doronzo D, Ahmed M (2017) Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian gulf. Sustainability 9.  https://doi.org/10.3390/su9091526 CrossRefGoogle Scholar
  2. Amadou AT, Jean LR, Zibo G et al (2011) Impact of very low crop residues cover on wind erosion in the Sahel. Catena 85:205–214CrossRefGoogle Scholar
  3. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  4. Barchyn TE, Hugenholtz CH (2012) Winter variability of aeolian sediment transport threshold on a coldclimate dune. Geomorphology 177–178:38–50CrossRefGoogle Scholar
  5. Bass ACW (2004) Evaluation of saltation flux impact responders (safires) for measuring instantaneous aeolian sand transport intensity. Geomorphology 59:99–118CrossRefGoogle Scholar
  6. Cetin M (2015) Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. Int J Sust Dev World Ecol 22(5):420–424Google Scholar
  7. Cetin M (2016) Sustainability of urban coastal area management: a case study on Cide. J Sustain For 35(7):527–541CrossRefGoogle Scholar
  8. Cetin M, Adiguzel F, Kaya O, Sahap A (2018a) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20(1):361–375CrossRefGoogle Scholar
  9. Cetin M, Zeren I, Sevik H, Cakir C, Akpinar H (2018b) A study on the determination of the natural park's sustainable tourism potential. Environ Monit Assess 190(3):167CrossRefGoogle Scholar
  10. Cetin M, Sevik H, Canturk U, Cakir C (2018c) Evaluation of the recreational potential of Kutahya urban Forest. Fresenius Environ Bull 27(5):2629–2634Google Scholar
  11. Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY (2004) Effects of asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95(2):151–155CrossRefGoogle Scholar
  12. Darmenova K, Sokolik IN, Shao Y, Marticorena B, Bergametti G (2009) Development of a physically based dust emission module within the weather research and forecasting(WRF) model: assessment of dust emission parameterizations and input parameters for source regions in central and East Asia. J Geophys Res 114.  https://doi.org/10.1029/2008JD011236
  13. De Oro LA, Buschiazzo DE (2009) Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degrad Dev 20(1):14–21CrossRefGoogle Scholar
  14. Dong ZB, Liu XP, Wang XM, Li F, Zhao A (2004) Experimental investigation of the velocity of a sand cloud blowing over a sandy surface. Earth Surf Proc Landf 29:343–358CrossRefGoogle Scholar
  15. Fecan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17(1):149–157CrossRefGoogle Scholar
  16. Fryear D, Bilbro J, Saleh A et al (2000) RWEQ: improved wind erosion technology. J Soil Water Conserv 55(2):183–189Google Scholar
  17. Gautam R, Hsu NC, Lau KM (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. Geophys Res Lett.  https://doi.org/10.1029/2010JD013819
  18. Gillette DA, Passi R (1988) Modeling dust emission caused by wind erosion. J Geophys Res 93(D11):14233–14242CrossRefGoogle Scholar
  19. In HJ, Park SU (2003) Estimation of dust emission amount for a dust storm event occurred in april 1998 in China. Water Air Soil Pollut 148(1):201–221CrossRefGoogle Scholar
  20. Iversen JD, Rasmussen KR (1994) The effect of surface slope on saltation threshold. Sedimentlogy 41(4):721–728CrossRefGoogle Scholar
  21. Kang JY, Yoon SC, Shao Y, Kim SW (2011) Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. J Geophys Res 116.  https://doi.org/10.1029/2010JD014649
  22. Kurosaki Y, Mikam IM (2007) Threshold wind speed for dust emission in East Asia and its seasonal variations. J Geophys Res 112.  https://doi.org/10.1029/2006JD007988
  23. Lancaster N, Baas A (1998) Influence of vegetation cover on sand transport by wind field studies at Owens lake, California. Earth Surf Proc Landf 23:69–82CrossRefGoogle Scholar
  24. Li XL, Zhang HS (2011) Research on threshold friction velocities during dust events over the Gobi Desert in Northwest China. J Geophys Res 116:D20210CrossRefGoogle Scholar
  25. Li XL, Zhang HS (2014) Observation and parameterization on dust emission over Horqin sandy land area. Peking University, BeijingGoogle Scholar
  26. Li J, Okin GS, Herrick JE, Belnap J, Munson SM, Miller ME (2010) A simple method to estimate threshold friction velocity of wind erosion in the field. Geophys Res Lett 37.  https://doi.org/10.1029/2010GL043245 CrossRefGoogle Scholar
  27. Li XL, Klose M, Shao Y et al (2014) Convective turbulent dust emission (CTDE) observed over Horqin Sandy land area and validation of a CTDE scheme. J Geophys Res 119(16):9980–9992Google Scholar
  28. Liu YQ, Mamtimin A, He Q (2014) Modification of key parameters in CoLM. Arid Zone Res 31(4):611–618 (In Chinese)Google Scholar
  29. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100(D8):16415–16430CrossRefGoogle Scholar
  30. McKenna NC (2003) Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound-Layer Meteorol 108:61–89CrossRefGoogle Scholar
  31. McKenna NC (2004) Effects of temperature and humidity upon the transport of sedimentary particles by wind. Sedimentology 51:1–17CrossRefGoogle Scholar
  32. McKenna NC, Sanderson S (2008) Humidity control of particle emissions in aeolian systems. J Geophys Res.  https://doi.org/10.1029/2007JF000780
  33. Nickling WG (1988) The initiation of particle movement by wind. Sedimentology 35:499–511CrossRefGoogle Scholar
  34. Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20(2):225–242CrossRefGoogle Scholar
  35. Park SU, In HJ (2003) Parameterization of dust emission for the simulation of the yellow sand(Asian dust) event observed in march 2002 in Korea. J Geophys Res 108.  https://doi.org/10.1029/2003JD003484
  36. Prospero JM (1999) Assessing the impact of advected African dust on air quality and health in the eastern United States. Hum Ecol Risk Assess 5(3):471–479CrossRefGoogle Scholar
  37. Prospero JM, Collard FX, Molinie J et al (2014) Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochem Cy 18:400–414Google Scholar
  38. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  39. Raupach MR (1992) Drag and drag partition on rough surfaces. Bound-Layer Meteorol 60:375–395CrossRefGoogle Scholar
  40. Sankey JB, Germino MJ, Glenn NF (2009) Relationships of post-fire aeolian transport to soil and atmospheric conditions. Aeolian Res 1:75–85CrossRefGoogle Scholar
  41. Schonfeldt HJ (2004) Establishing the threshold for intermittent aeolian sediment transport. Meteorol Z 13(5):437–444CrossRefGoogle Scholar
  42. Shao Y (2001) A model for mineral dust emission. J Geophys Res 106(D17):20239–20254CrossRefGoogle Scholar
  43. Shao YP, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105(D17):22437–22443CrossRefGoogle Scholar
  44. Shao Y, Raupach MR, Leys JF (1996) A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region. Aust J Soil Res 34:309–342CrossRefGoogle Scholar
  45. Shao Y, Jung E, Leslie LM (2002) Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J Geophys Res 107.  https://doi.org/10.1029/2001JD001493
  46. Sherman DJ, Farrell EJ (2008) Aerodynamic roughness lengths over movable beds: comparison of wind tunnel and field data. J Geophys Res 113.  https://doi.org/10.1029/2007JF000784
  47. Shinoda M, Kimura R, Mikami M, Tsubo M, Nishihara E, Ishizuka M, Yamada Y, Munkhtsetseg E, Jugder D, Kurosaki Y (2010) Characteristics of dust emission in the Mongolian steppe during the 2008 DUVEX intensive observation period. Sola 6:9–12CrossRefGoogle Scholar
  48. Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683CrossRefGoogle Scholar
  49. Spaan WP, Abeele GDVD (1991) Wind borne particle measurements with acoustic sensors. Soil Technol 4(1):51–63CrossRefGoogle Scholar
  50. Spyrou C, Kallos G, Mitsakou C, Athanasiadis P, Kalogeri C, Iacono MJ (2013) Modeling the radiative effects of desert dust on weather and regional climate. Atmos Chem Phys 13:5489–5504CrossRefGoogle Scholar
  51. Stockton PH, Gillette DA (1990) Field measurements of the sheltering effect of vegetation on erodible land surfaces. Land Degrad Dev 2:77–85.  https://doi.org/10.1002/ldr.3400020202 CrossRefGoogle Scholar
  52. Stout JE (2004) A method for establishing the critical threshold for aeolians transport in the field. Earth Surf Proc Landf 29(10):1195–1207CrossRefGoogle Scholar
  53. Stout JE, Zobeck TM (1996a) The Wolfforth field experiment: a wind erosion study. Soil Sci 161(9): 616-632#CrossRefGoogle Scholar
  54. Stout JE, Zobeck TM (1996b) Establishing the threshold condition for soil movement in wind eroding fields. International conference on air pollution from agricultural operations, pp 65–71Google Scholar
  55. Vianaa M, Querola X, Alastueya A et al (2002) Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos Environ 36(38):5861–5875CrossRefGoogle Scholar
  56. Westphal DL, Toon OB, Carlson TN (1988) A case-study of mobilization and transport of Saharan dust. J Atmos Sci 45(15):2145–2175CrossRefGoogle Scholar
  57. Yang XH, He Q, Mamtimin A et al (2013) Near-surface sand-dust horizontal flux in Tazhong-the hinterland of the Taklimakan Desert. J Arid Land 5(2):199–206CrossRefGoogle Scholar
  58. Yang XH, Yang F, Liu XC, Liu X, Huo W, He Q, Mamtimin A, Zhang Q (2015) Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China. Theor Appl Climatol 126:223–231.  https://doi.org/10.1007/s00704-015-1573-0 CrossRefGoogle Scholar
  59. Yang XH, He Q, Liu XC, Yang F, Huo W, Shen S, Mamtimin A (2017a) Saltation activity and its threshold velocity in the Gurbantunggut Desert, China. Nat Hazards 90:349–364.  https://doi.org/10.1007/s11069-017-3047-4 CrossRefGoogle Scholar
  60. Yang XH, He Q, Mamtimin A et al (2017b) Threshold velocity for saltation activity in the Taklimakan Desert. Pure Appl Geophys 174:4459–4470.  https://doi.org/10.1007/s00024-017-1644-5 CrossRefGoogle Scholar
  61. Zhao TL, Gong SL, Zhang XY, Abdel-Mawgoud A, Shao YP (2006) An assessment of dust emission schemes in modeling east Asian dust storms. J Geophys Res 111.  https://doi.org/10.1029/2004JD005746
  62. Zhou CL, Yang XH, Zhong XJ et al (2017a) Dust weather in hinterland of the Taklimakan desert. Arid Zone Res 34(2):324–329 (In Chinese)Google Scholar
  63. Zhou CL, Yang XH, Huo W et al (2017b) Characteristics of precipitation at the hinterland of the Taklimakan desert. J Desert Res 37(2):343–348 (In Chinese)Google Scholar
  64. Zhou CL, Zhong XJ, Zhang SM et al (2017c) The comparison of precipitation and wind-blown sand environment over the hinterland of the Taklimakan desert with its surrounding regions desert. J Arid Land Resour Environ 31(2):117–122 (In Chinese)Google Scholar
  65. Zhu H, Zhang HS (2011) Review of the threshold for dust emission during dust events. Adv Earth Science 26(1):30–38 (In Chinese)Google Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  1. 1.Institute of Desert MeteorologyChina Meteorological AdministrationUrumqiChina
  2. 2.Taklimakan Desert Meteorology Field Experiment Station of CMATazhongChina

Personalised recommendations