Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco

  • El Mahdi El KhalkiEmail author
  • Yves Tramblay
  • Mohamed El Mehdi Saidi
  • Christophe Bouvier
  • Lahoucine Hanich
  • Mounia Benrhanem
  • Meriem Alaouri
Original Paper


In the Mediterranean region, floods are causing extended damages to the population and infrastructures. In Morocco, only a few studies have been conducted to understand flood processes while the vulnerability to floods is high. The goals of this study are to compare two modeling approaches for floods using either lumped or spatial rainfall and also to evaluate hydrological forecast capabilities. The Rheraya research catchment is characterized with steep slopes, altitudes ranging from 1027 to 4167 m, and a strong variability of rainfall. The lumped and distributed models provided similar results and reproduced well a sample of six flood events recorded in 2014. However, the distributed model provided the best estimation of the initial conditions, estimated from the ESA-CCI satellite soil moisture product and the Antecedent Precipitation Index. The validation of the lumped and the distributed models, using ESA-CCI to initialize the models, provides a Nash coefficient of 0.61 and 0.63 respectively. Then, two meteorological forecasts provided by the AROME and ALADIN models were evaluated against observed precipitation to provide a hydrological forecast. The AROME forecast performed better but still with a strong bias compared to observed precipitation. Further research is needed to link quantitative precipitation forecasts with hydrological models in this type of catchment.


Flood modeling AROME ALADIN ESA-CCI Rheraya High Atlas Morocco 


Funding information

This research has been financed by the Centre National de la Recherche Scientifique et Technique (CNRST), the LMI TREMA laboratory, and the ERASMUS+ program. This work is a contribution to the Hydrological cycle in The Mediterranean EXperiment (HyMeX) program, through INSU/MISTRALS support.


  1. ALADIN International Team (1997) The ALADIN project: mesoscalemodelling seen as basic tool for weather forecasting and atmospheric research. WMO Bull 46:317–324Google Scholar
  2. Albergel C, Dorigo W, Reichle R, Balsamo G, Rosnay Pd, Muñoz-Sabater J, Isaksen L, Jeu Rd, Wagner W (2013) Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J Hydrometeorol 14:1259–1277CrossRefGoogle Scholar
  3. Alfieri L, Thielen J, Pappenberger F (2012) Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland. J Hydrol 424-425:143–153CrossRefGoogle Scholar
  4. Alvarez-Garreton C, Ryu D, Western AW, Crow WT, Robertson DE (2014) The impacts of assimilating satellite soil moisture into a rainfall–runoff model in a semi-arid catchment. J Hydrol 519:2763–2774CrossRefGoogle Scholar
  5. Amengual A, Homar V, Jaume O (2015) Potential of a probabilistic hydrometeorological forecasting approach for the 28 September 2012 extreme flash flood in Murcia, Spain. Atmos Res 166:10–23CrossRefGoogle Scholar
  6. Argence S, Lambert D, Richard E, Chaboureau JP, Söhne IN (2008) Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: a case study. Q J R Meteorol Soc 134:1775–1788CrossRefGoogle Scholar
  7. Arnaud P, Lavabre J (2002) Coupled rainfall model and discharge model for flood frequency estimation. Water Resour Res 38(6):111–1111CrossRefGoogle Scholar
  8. Arnaud P, Lavabre J, Fouchier C, Diss S, Javelle P (2011) Sensitivity of hydrological models to uncertainty of rainfall input. Hydrol Sci J 56(3):397–410CrossRefGoogle Scholar
  9. Beck HE, Jeu RAMD, Schellekens J, Dijk AIJMV, Bruijnzeel LA (2009) Improving curve number based storm runoff estimates using soil moisture proxies. IEEE J Sel Top Appl Earth Obs Remote Sens 2:250–259CrossRefGoogle Scholar
  10. Berthet L, Andreassian V, Perrin C, Javelle P (2009) How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrol Earth Syst Sci 13:819–831CrossRefGoogle Scholar
  11. Beven KJ, Kirkby MJ (1979) A physicallybased, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci Bull 24(1):43–69CrossRefGoogle Scholar
  12. Boudhar A, Hanich L, Boulet G, Dauchemin B, Berjamy B, Chehbouni A (2009) Evaluation of the snowmelt runoff model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol Sci J 54(6):1094–1113CrossRefGoogle Scholar
  13. Brocca L, Melone F, Moramarco T, Singh VP (2009a) Assimilation of observed soil moisture data in storm rainfall–runoff modeling. J Hydrol Eng-ASCE 14:153–165CrossRefGoogle Scholar
  14. Brocca L, Melone F, Moramarco T, Morbidelli R (2009b) Antecedent wetness conditions based on ERS scatterometer data. J Hydrol 364:73–87CrossRefGoogle Scholar
  15. Brocca L, Ciabatta L, Massari C, Camici S, Tarpanelli A (2017) Soil moisture for hydrological applications: open questions and new opportunities. Water 9(2):140CrossRefGoogle Scholar
  16. Brocca L, Moramarco T (2012) Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans Geosci Remote Sens 50:2542–2555CrossRefGoogle Scholar
  17. Chaponnière A, Boulet G, Chehbouni A, Aresmouk M (2008) Understanding hydrological processes with scarce data in a mountain environment. Hydrol Process 22:1908–1921CrossRefGoogle Scholar
  18. Chu XF, Steinman A (2009) Event and continuous hydrologic modeling with HEC-HMS. J Irrig Drain Eng 135(1):119–124CrossRefGoogle Scholar
  19. Courtier P, Freydier C, Geleyn JF, Rabier F, Rochas M, (1991) The Arpege project at Météo-France. Proceedings of the 1991 ECMWF seminar, ECMWF 193–231Google Scholar
  20. Coustau M, Bouvier C, Borrell-Estupina V, Jourde H (2012) Flood modelling with a distributed event-based parsimonious rainfall–runoff model: case of the karstic Lez river catchment. Nat Hazards Earth Syst Sci 12:1119–1133CrossRefGoogle Scholar
  21. Corominas J (1993) Landslide occurrence: a review of the Spanish experience. In: Corominas J, Georgakakos KP (Eds). Proceedings of the U.S.-Spain Workshop on Natural Hazards 175–194Google Scholar
  22. Davis HC (1976) A lateral boundary formulation for multi-level prediction models. Quart J R Met SOC 102:405–418Google Scholar
  23. Douglas I, Kurshid A, Maghenda M, McDonnell Y, McLean L, Campbell J (2008) Unjust waters: climate change, flooding and the urban poor in Africa. Environ Urban 20(1):187–205CrossRefGoogle Scholar
  24. Dorigo WA, Gruber A, Jeu RAMD, Wagner W, Stacke T, Loew A, Albergel C, Brocca L, Chung D, Parinussa RM, Kidd R (2015) Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens Environ 162:380–395CrossRefGoogle Scholar
  25. Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer P, Hirschi M, Ikonen J, de Jeu R, Kidd R, Lahoz W, Liu YY, Miralles DG, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, van der Schalie R, Seneviratne SI, Smolander T, Lecomte P (2017) ESA CCI soil moisture for improved earth system understanding: state-of-the-art and future directions. Remote Sens Environ 203:185–215CrossRefGoogle Scholar
  26. Ducrocq V, Richard D, Lafore JP, Orain F (2002) Stormscale numerical rainfall prediction for five precipitating events over France: on the importance of initial humidity field. Weather Forecast 17:1236–1256CrossRefGoogle Scholar
  27. Fang L, Hain CR, Zhan X, Anderson MC (2016) An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model. Int J Appl Earth Obs Geoinf 48:37–50CrossRefGoogle Scholar
  28. Gruber A, Su CH, Zwieback S, Crow WT, Wagner W, Dorigo W (2016) Recent advances in (soil moisture) triple collocation analysis. Int J Appl Earth Obs Geoinf 45(Part B):200–211CrossRefGoogle Scholar
  29. Huang M, Gallichand J, Dong C, Wang Z, Shao M (2007) Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China. Hydrol Process 21:1471–1481CrossRefGoogle Scholar
  30. Hugues DA (2011) Regionalization of models for operational purposes in developing countries: an introduction. Hydrol Res 42:331–337CrossRefGoogle Scholar
  31. Jacobs JM, Myers DA, Whitfield BM (2003) Improved rainfall/runoff estimates using remotely sensed soil moisture. J Am Water Resour Assoc 4:313–324CrossRefGoogle Scholar
  32. Jarlan L, Khabba S, Er-raki S, Le Page M, Hanich L, Fakir Y, Mangiarotti S, Gascoin S et al (2015) Remote sensing of water resources in semi-arid Mediterranean areas: the joint international laboratory TREMA. Int J Remote S 36(19–20):4879–4917CrossRefGoogle Scholar
  33. Khabba S, Jarlan L, Er-Raki S, Le Page M, Ezzahar J, Boulet G, Simonneaux V, Kharrou MH, Hanich L, Chehbouni G (2013) The SudMed Program and the Joint International Laboratory TREMA: a decade of water transfer study in the soil-plant-atmosphere system over irrigated crops in semi-arid area. Procedia Environ Sci 19:524–533CrossRefGoogle Scholar
  34. Kohler MA, Linsley RK (1951) Predicting runoff from storm rainfall. Res. Paper 34, US Weather Bureau, Washington, DCGoogle Scholar
  35. Le Moine N (2008) Le bassin versant de surface vu par le souterrain : une voie d’amélioration des performances et du réalisme des modèles pluie-débit ? PhD thesis (in French), UPMC, Paris, FranceGoogle Scholar
  36. Liu Z, Todini E (2002) Towards a comprehensive physically-based rainfall-runoff model. Hydrol Earth Syst Sci 6:859–881CrossRefGoogle Scholar
  37. Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner W, Van Dijk AIJM, Evans JP (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436CrossRefGoogle Scholar
  38. Liu YY, Dorigo WA, Parinussa RM, De Jeu RAM, Wagner W, McCabe MF, Van Dijk AIJM (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297CrossRefGoogle Scholar
  39. Llasat MC, Llasat-Botija M, Prat MA, Porcu F, Price C, Mugnai A, Lagouvardos K, Kotroni V, Katsanos D, Michaelides S, Yair Y, Savvidou K, Nicolaides K (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55CrossRefGoogle Scholar
  40. Longobardi A, Villani P, Grayson RB, Western AW (2003) On the relationship between runoff coefficient and catchment initial conditions. Proc, MODSIM 2003 Int. Congress on Modelling and Simulation, Vol. 2, Modelling and Simulation Society of Australia and New Zealand Inc. Townsville, Australia 867–872Google Scholar
  41. Marchane A, Tramblay Y, Hanich L, Ruelland D, Jarlan L (2017) Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrol Sci J 62(6):979–995CrossRefGoogle Scholar
  42. Massari C, Brocca L, Barbetta S, Papathanasiou C, Mimikou M, Moramarco T (2014) Using globally available soil moisture indicators for flood modelling in Mediterranean catchments. Hydrol Earth Syst Sci 18(2):839–853CrossRefGoogle Scholar
  43. Massari C, Brocca L, Ciabatta L, Moramarco T, Gabellani S, Albergel C, de Rosnay P, Puca S, Wagner W (2015a) The use of H-SAF soil moisture products for operational hydrology: flood modelling over Italy. Hydrology 2(1):2–22CrossRefGoogle Scholar
  44. Massari C, Brocca L, Tarpanelli A, Moramarco T (2015b) Data assimilation of satellite soil moisture into rainfall-runoff modelling: a complex recipe? Remote Sens 7(9):11403–11433CrossRefGoogle Scholar
  45. Merheb M, Moussa R, Abdallah C, Coli F, Perrin C, Baghdadi N (2016) Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. Hydrol Sci J 61(14):2520–2539CrossRefGoogle Scholar
  46. Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models, 1, a discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  47. Ochsner TE, Cosh MH, Cuenca RH, Dorigo WA, Draper CS, Hagimoto Y, Kerr YH, Njoku EG, Small EE, Zreda M (2013) State of the art in large-scale soil moisture monitoring. Soil Sci Soc Am J 77:1888–1919CrossRefGoogle Scholar
  48. Perrone J, Madramootoo CA (1998) Improved curve number selection for runoff prediction. Can J Civil Eng 25:728–734CrossRefGoogle Scholar
  49. Sadiki W, Fischer C, Geleyn JF (2000) Mesoscale background error covariances: recent results obtained with the limited-area model ALADIN over Morocco. Mon Weather Rev 128(11):3927–3935CrossRefGoogle Scholar
  50. Saidi ME, Daoudi L, Aresmouk ME, Blali A (2003) Rôle du milieu physique dans l’amplification des crues en milieu montagnard : exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc). Sécheresse 14(2):1–8Google Scholar
  51. Saidi ME, Bouloumou Y, Ed-Daoudi S, Aresmouk ME (2013) Les crues de l’ouedIssil en amont de Marrakech (Maroc), unrisque naturel recurrent - the floods of the wadiIssil upstream of Marrakesh (Morocco), a recurring natural hazard. Eur Sci J 9(23):189–208Google Scholar
  52. Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France convective-scale operational model. Mon Weather Rev 139:976–991CrossRefGoogle Scholar
  53. Tommaso D, Marsigli C, Nerozzi F, Papetti P, Paccagnella T (2008) Coupling high-resolution precipitation forecasts and discharge predictions to evaluate the impact of spatial uncertainty in numerical weather prediction model outputs. Meteorol Atmos Phys 102:37–62CrossRefGoogle Scholar
  54. Tramblay Y, Bouvier C, Martin C, Didon-Lescot JF, Todorovik D, Domergue JM (2010) Assessment of initial soil moisture conditions for event-based rainfall–runoff modeling. J Hydrol 387:176–187CrossRefGoogle Scholar
  55. Tramblay Y, Bouvier C, Ayral PA, Marchandise A (2011) Impact of rainfall spatial distribution on rainfall–runoff modeling efficiency and initial soil moisture conditions estimation. Nat Hazards Earth Syst Sci 11:157–170CrossRefGoogle Scholar
  56. Tramblay Y, Badi W, Driouech F, El Adlouni S, Neppel L, Servat E (2012) Climate change impacts on extreme precipitation in Morocco. Glob Planet Chang 82–83:104–114CrossRefGoogle Scholar
  57. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013) High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci 17:3721–3739CrossRefGoogle Scholar
  58. USDA, Soil Conservation Service (1956) National engineering handbook. Supplement A, Section 4, Hydrology. Chapter 10. Soil Conservation Service, Washington, D.CGoogle Scholar
  59. USDA, Soil Conservation Service (1972) National engineering handbook, hydrology, Section 4, 548, Washington DC, USAGoogle Scholar
  60. USACE (2010) Hydrologic modeling system HEC-HMS. Technical reference manual version 3.5. US Army Corps of Engineers, Hydrologic Engineering Center, DavisGoogle Scholar
  61. Vincendon B, Ducrocq V, Saulnier GM, Bouilloud L, Chancibault K, Habets F, Noilhan J (2010) Benefit of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods. J Hydrol 394:256–266CrossRefGoogle Scholar
  62. Vincendon B, Ducrocq V, Nuissier O, Vié B (2011) Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting. Nat Hazards Earth Syst Sci 11:1529–1544CrossRefGoogle Scholar
  63. Vinet F, Boissier L, Saint-Martin C (2016a) Flashflood-related mortality in southern France: first results from a new database. FLOODrisk 2016 - 3rd European Conference on Flood Risk ManagementGoogle Scholar
  64. Vinet F, Saidi ME, Douvinet J, Fehri N, Nasrallah W, Menad W, Mellas S (2016b) Urbanization and land use as a driver of flood risk. The Mediterranean region under climate change. A scientific update. IRD éditions, Marseille, pp 563–575Google Scholar
  65. Zema DA, Labate A, Martinon D, Zimbone SM (2017) Comparing different infiltration methods of the HEC-HMS model: the case of the Mésima torrent (Southern Italy). Land Degrad Dev 28:294–308CrossRefGoogle Scholar
  66. Zemzami M, Benaabidate L, Layan B, Dridri A (2013) Design flood estimation in ungauged catchments and statistical characterization using principal components analysis: application of Gradex method in Upper Moulouya. Hydrol Process 27(2):186–195CrossRefGoogle Scholar
  67. Zkhiri W, Tramblay Y, Hanich L, Berjamy B (2017) Regional flood frequency analysis in the High Atlas mountainous catchments of Morocco. Nat Hazards 86(2):953–967CrossRefGoogle Scholar
  68. Zribi M, Kotti F, Amri R, Wagner W, Shabou M, Lili-Chabaane Z, Baghdadi N (2014) Soil moisture mapping in a semiarid region, based on ASAR/Wide Swath satellite data. Water Resour Res 50:823–835CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • El Mahdi El Khalki
    • 1
    Email author
  • Yves Tramblay
    • 2
  • Mohamed El Mehdi Saidi
    • 1
  • Christophe Bouvier
    • 2
  • Lahoucine Hanich
    • 3
  • Mounia Benrhanem
    • 4
  • Meriem Alaouri
    • 5
  1. 1.Geosciences and Environment LaboratoryCadi Ayyad UniversityMarrakeshMorocco
  2. 2.HydroSciences Montpellier (IRD, CNRS, Univ. Montpellier)MontpellierFrance
  3. 3.Georesources Laboratory - Associated to CNRST (URAC42)Cadi Ayyad UniversityMarrakeshMorocco
  4. 4.Tensift Hydraulic Basin AgencyMarrakechMorocco
  5. 5.The Department of National Meteorology (DMN)CasablancaMorocco

Personalised recommendations