Adsorption of nickel(II) and chromium(III) from aqueous phases on raw smectite: kinetic and thermodynamic studies

  • Sana GhrabEmail author
  • Samir Mefteh
  • Mounir Medhioub
  • Mourad Benzina
ICIEM 2016
Part of the following topical collections:
  1. Water Resource Management for Sustainable Development


The ability of Tunisian smectite, collected from Aleg Formation (Jebel Romena), in the adsorption of nickel (Ni(II) and chromium (Cr(III)) cations from aqueous solutions has been studied through a bath adsorption mechanism with respect to different optimal parameters including the amount of adsorption, pH, and contact time. The characterization of a smectite sample was performed using XRD, XRF, FT-IR, SEM, BET-specific surface area techniques, thermo-gravimetric analyses, and CEC. The process of adsorption kinetics was examined using the pseudo-first-order, the pseudo-second-order, and the intraparticle diffusion models. The results revealed that the adsorption of Ni(II) and Cr(III) cations was according to the pseudo-second-order model. The changes of the thermodynamic parameters such us the Gibbs free energy (ΔG), the enthalpy (ΔH), and entropy (ΔS) attested, spontaneous and endothermic between 10 and 40 °C.


Smectite Nickel Chromium Kinetic Thermodynamic 


  1. Ahmad AL, Majid MA, Ooi BS (2011) Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation. Desalination 268(1–3):266–269CrossRefGoogle Scholar
  2. Amzal B, Julin B, Vahter M, Wolk A, Johanson G, Akesson A (2009) Population toxico kinetic modeling of cadmium for health risk assessment. Environ Health Perspect 117:1293–1301CrossRefGoogle Scholar
  3. Assameur H, Boufatit M (2012) Contribution to the removal study of Co2+ ions by acid-activated clay from Maghnia (Algeria): equilibrium and kinetic studies. Desalin Water Treat 45(1–3):315–323CrossRefGoogle Scholar
  4. ATSDR (2003) Toxicological profile for pyrethrins and pyrethroids. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  5. Azizi FM, Dib S, Boufatit M (2013) Removal of heavy metals from aqueous solutions by Algerian bentonite. Desalin Water Treat 51(22–24):4447–4458CrossRefGoogle Scholar
  6. Baccar R, Bouzid J, Feki M, Montiel A (2009) Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metals ions. J Hazard Mater 162:1522–1529CrossRefGoogle Scholar
  7. Baran B, Ertuk T, Sarikaya Y, Alemdaroglu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20:53–63CrossRefGoogle Scholar
  8. Beliles RP (1979) The lesser metals. In: Oehme FW (ed) Toxicity of heavy metals in the environment, part 2. Marcel Dekker, New York, p 383Google Scholar
  9. Boujelben N, Bouzid J, Elouar Z, Feki M, Jamoussi F, Montiel A (2008) Phosphorous removal from aqueous solution using iron coated natural and engineer adsorbents. J Hazard Mater 151:103–110CrossRefGoogle Scholar
  10. Brigatti MF, Laurora A, Malferrari D, Medici L, Poppi L (2005) Adsorption of [Al(urea)6]3+ and [Cr (urea)6]3+ complexes in the vermiculite interlayer. Appl Clay Sci 30:21–32CrossRefGoogle Scholar
  11. Chaari I, Fakhfakh E, Chakroun S, Bouzid J, Boujelben N, Feki M, Rocha F, Jamoussi F (2008) Lead removal from aqueous solutions by a Tunisian smectite clay. J Hazard Mater 156:545–551CrossRefGoogle Scholar
  12. Dabrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewater by ions exchange method. Chemosphere 56(2):91–106CrossRefGoogle Scholar
  13. Elouar Z, Bouzid J, Boujelben N, Feki M, Montiel A (2008) Heavy metal removal from aqueous solutions by activated phosphate rock. J Hazard Mater 156:412–420CrossRefGoogle Scholar
  14. Eloussaief M, Benzina M (2010) Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions. J Hazard Mater 178(1–3):753–757CrossRefGoogle Scholar
  15. Eloussaief M, Bouaziz S, Kallel N, Benzina M (2014) Valorization of El Haria clay in the removal of arsenic from aqueous solution. Desalin Water Treat 52(10–12):2220–2224CrossRefGoogle Scholar
  16. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645CrossRefGoogle Scholar
  17. Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104CrossRefGoogle Scholar
  18. Ghnainia L, Eloussaief M, Zouari K, Abbes C (2016) Waste water treatment in petroleum activities: example of “SEWAGE” unit in the BG Tunisia Hannibal plant. Appl Petrochem Res 6(2):155–162CrossRefGoogle Scholar
  19. Ghrab S, Boujelben N, Medhioub M, Jamoussi F (2013) Chromium and nickel removal from industrial wastewater using Tunisian clay. Desalin Water Treat 52:2253–2260CrossRefGoogle Scholar
  20. Ghrab S, Benzina M, Lambert S (2017a) Copper adsorption from wastewater using bone charcoal. Adv Mater Phys Chem 7:139–147CrossRefGoogle Scholar
  21. Ghrab S, Eloussaief M, Lambert S, Benzina M, Bouaziz S (2017b) Adsorption of terpenic compounds onto organo-palygoskite. Environmental Sciences and Pollution Research. OnlineCrossRefGoogle Scholar
  22. Ghrab S, Balme S, Cretin M, Bouaziz S, Benzina M (2018) Adsorption of trepenes from Eucalyptus globulus onto modified beidellite. Appl Clay Sci 156:169–177CrossRefGoogle Scholar
  23. Gillot JE (1987) Clay in engineering geology. Elsevier Science Publishers, AmsterdamGoogle Scholar
  24. Hamdi N, Srasra E (2012) Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. J Environ Sci 24(4):617–623CrossRefGoogle Scholar
  25. Ho Y S (2004) Citation review of Lagergen kinetic rate equation on adsorption reactions. Akadémiai Kiado, Budapest, and Kluwer academic publishers, Dordrecht. Scientometrics 59, N° 1:171–177CrossRefGoogle Scholar
  26. Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689CrossRefGoogle Scholar
  27. Ho YS, McKay G (1999) Pseudo second order model for sorption process. Process Biochem 34:451–465CrossRefGoogle Scholar
  28. Ho YS, McKay G, Wase DAJ, Foster CF (2000) Study of the sorption of divalent metal ions on the peat. Adsorpt Sci Technol 8:639–650CrossRefGoogle Scholar
  29. Huang YH, Hsueh CL, Huang CP, Su LC, Chen CY (2007) Adsorption thermodynamic and kinetic studies of Pb (II) removal from water onto a versatile AL2O3− supported iron oxide. Sep Purif Technol 55:23–29CrossRefGoogle Scholar
  30. International Agency for Research on Cancer (IARC) (2012) Chromium, nickel and welding, IARC monographs on the education of carcinogenic risks to humans, 49. World Health Organization, LyonGoogle Scholar
  31. Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+ and Cr3+ by IRN-77 cations exchange resin in synthesized wastewater. Chemosphere 56:141–147CrossRefGoogle Scholar
  32. Karthika C, Vennilamani N, Pattabhi S, Sekar M (2010) Utilization of sago waste as an adsorbent for the removal of Pb (II) from aqueous solutions: kinetic and isotherm studies. Int J Eng Sci Technol 2(6):1867–1879Google Scholar
  33. Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with laden heavy metals. Chem Eng J 118:83–98CrossRefGoogle Scholar
  34. López-Galindo A, Torres-Ruiz J, González-López JM (1996) Mineral quantification in sepiolite–palygorskite deposists using X-ray diffraction and chemical data. Clay Miner 31:224–227Google Scholar
  35. Lu XW, Wang LJ, Lei K, Huang J, Zhai YX (2009) Contamination assessment of copper, lead, zinc manganese and nickel in street dust of Baoji, NW China. J Hazard Mater 161:1058–1062CrossRefGoogle Scholar
  36. Malkoc E, Nuhoglu Y (2005) Investigation of nickel (II) removal from aqueous solutions using tea factory waste. J Hazard Mater B 127:120–128CrossRefGoogle Scholar
  37. Martín-Ramos J D (2004) X-powder, a software package for powder X-ray diffraction analysis. Legal deposit G.R.1001/04.
  38. Mbamba CK, Batstone DJ, Flores-Alsina X, Tait S (2015) A generalized chemical precipitation modeling approach in wastewater treatment applied to calcite. Water Res 68:342–353CrossRefGoogle Scholar
  39. Nandy T, Kaul SN, Pathe PP, Malika B (1990) Chromium recovery from spent chrome tan liquor. CEW XXV 20:90Google Scholar
  40. Natasha AG, Vernon RM (2006) Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int J Environ Res Public Health 3(1):86–97CrossRefGoogle Scholar
  41. Omri A, Wali A, Benzina M (2016) Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: equilibrium, kinetic and thermodynamic studies. Arab J Chem 9(2):1729–1739CrossRefGoogle Scholar
  42. Pan BJ, Pan BC, Zhang WM, Lv L, Zhang QX, Zheng SR (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants from waters. Chem Eng J 151:19–29CrossRefGoogle Scholar
  43. Pang FM, Kumar P, Teng TT, Mohd OAK, Wasewar KL (2011) Removal of lead, zinc and iron by coagulation–flocculation. J Taiwan Inst Chem Eng 42:809–815CrossRefGoogle Scholar
  44. Park Y, Ayoko GA, Kurdi R, Horváth E, Kristóf J, Frost RL (2013) Adsorption of phenolic compounds by organoclays: implications for the removal of organic pollutants from aqueous media. J Colloid Interface Sci 15(406):196–208CrossRefGoogle Scholar
  45. Sdiri A, Khairy M, Bouaziz S, El-Safty S (2016) A natural clayey adsorbent for selective removal of lead from aqueous solutions. Appl Clay Sci 126:89–97CrossRefGoogle Scholar
  46. Sheng GP, Xu J, Luo HW, Li WW, Li WH, Xie Z, Wei SQ, Hu FC, Yu HQ (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res 47:607–614CrossRefGoogle Scholar
  47. Tuccimei P, Mollo S, Soligo M, Scarlato P, Castelluccio M (2015) Real-time setup to measure radon emission during rock deformation: implications for geochemical surveillance. Geosci Instrum Methods Data Syst 5:39–62CrossRefGoogle Scholar
  48. Villa-Gomez D, Ababneh H, Papirio S, Rousseau DPL, Lens PNL (2011) Effect of sulfide concentration on the metal precipitates in inversed fluidized bed reactors. J Hazard Mater 192(1–15):200–207Google Scholar
  49. Wahaba MA, Ben Hassineb R, Jellalia S (2011) Removal of phosphorus from aqueous solutions by Posidonia oceanica fibers using continuous stirring tank reactor. J Hazard Mater 189:577–585CrossRefGoogle Scholar
  50. Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Lu J, Ding S, Li L, Shelton BJ, Tucker T, Evers BM, Zhang Z, Shi X (2012) Arsenic and chromium in drinking water promote tumorigenesis in a mousecolitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 262:11–21CrossRefGoogle Scholar
  51. Wielinga B, Mizuba M, Hansel CM (2001) Iron promoted reduction of chromate by dissimilatory iron-deducing bacteria. Environ Sci Technol 35:522–527CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Sana Ghrab
    • 1
    Email author
  • Samir Mefteh
    • 2
    • 3
  • Mounir Medhioub
    • 2
  • Mourad Benzina
    • 1
  1. 1.University of SfaxSfaxTunisia
  2. 2.Faculty of Science, Department of GeologyUniversity of SfaxSfaxTunisia
  3. 3.Laboratory of Valorization of Useful MaterialCNRSMSolimanTunisia

Personalised recommendations