Advertisement

Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage

  • Mariem Trifi
  • Mohja Dermech
  • Charef Abdelkrim
  • Rim Azouzi
  • Bilel Hjiri
Original Paper
  • 34 Downloads

Abstract

The wall rocks of Sidi Driss mineralization contain continental molassic deposits: lacustrine limestones, ferruginous fragments, Ed Diss unit and Numidian unit fragments, rhyodacitic fragments, pyroclasts, and gneissic fragments. The ore is composed of pyrite, marcasite, sphalerite, galena, barite, celestite, siderite, calcite, and iron oxide-hydroxides. The abandoned wastes in Sidi Driss-Tamra district contain marcasite, galena, goethite, jarosite, anglesite, anhydrite, bassanite, and gypsum. It is very important to assess the hazards and risks that this material type poses to public health and the environment. However, evaluation of a part of toxic elements always poses problems since the associated matrix, the close relationships between some minerals, the grain sizes and their forms (oolites, compact collomorphes aggregate), the oxidation degree of metals, the chemical composition, and trace elements make it difficult to extract mobile metals from complex Sidi Driss tailings and minerals found in these acidic wastes. Nevertheless, there is no universal method that can systematically evaluate metal bioavailability. And the use of proposed sequential extraction procedures for sediments with simple mineralogical composition did not yield any reproducible results for this type of acid mine drainage sediments. Consequently, the methods of controlling and mitigating the risks of hazardous materials should be considered. Many extraction procedures have been applied to better evaluate the mobility of hazardous materials (metals), the characterization of their degree of toxicity, and their chemical behavior in these complex mine tailings. Reproducible results were obtained with lab-scale washing of sediments using distilled water, CaCl2 and Na2-EDTA solutions, and BCR sequential extraction. The results showed that the BCR extraction approach was the most efficient procedure for these types of wastes. The extraction with distilled water is recommended for identification of the total quantity of mobile Cr and Fe.

Keywords

Complex mineralogy Metals Simple extraction Sequential extraction 

References

  1. Acosta JA, Faz A, Kalbitz K, Jansen B, Martínez-Martínez S (2014) Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J Geochem Explor 144:298–305CrossRefGoogle Scholar
  2. Adamo P, Zampella M (2008) Chemical speciation to assess potentially toxic metals (PTMs) bioavailability and geochemical forms in polluted soils. In: De Vivo, B., Belkin, H. E., Lima, A. (Eds.). Environ geochemistry: site characterization, data analysis and case histories 175–212Google Scholar
  3. Adriano DC (2001) Trace elements in terrestrial environment: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer Verlag, New YorkCrossRefGoogle Scholar
  4. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142CrossRefGoogle Scholar
  5. AFNOR (1979) France norms AFNOR www afnor frGoogle Scholar
  6. Anjos C, Magalhaes MCF, Abereu MM (2012) Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Bracal abandoned lead mine area, Portugal. J Geochem Explor 113:45–55CrossRefGoogle Scholar
  7. Arain MB, Kazi TG, Jamali MK, Afridi HI, Jalbani N, Sarfraz RA, Baig JA, Kandhro GA (2008) Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Memon J Hazard Mater 160:235–239CrossRefGoogle Scholar
  8. Azouzi R, Charef A, Hamzaoui AH (2015) Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environ Earth Sci 74:2967–2980CrossRefGoogle Scholar
  9. Baize D (1997) Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d’interprétation, Paris, INRA Éditions, 410pGoogle Scholar
  10. Balci N, Mayer B, Shanks WC, Mandernack KW (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351CrossRefGoogle Scholar
  11. Belzile N, Devitre RR, Tessier A (1989) In situ collected of diagenetic of iron and manganese oxides-hydroxides from natural sediments. Nature 340:376–377CrossRefGoogle Scholar
  12. Bermond A, Ghestem JP, Yousfi I (1998) Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785–789Google Scholar
  13. Cappuyns V, Swennen R, Niclaes M (2007) Application of the BCR sequential extraction scheme to dredged pond sediments contaminated by Pb–Zn mining: a combined geochemical and mineralogical approach. J Geochem Explor 93:78–86CrossRefGoogle Scholar
  14. Chou ML, Jean JS, Yang CM, Hseu ZY, Chen YH, Wang HL, Das S, Chou LS (2016) Inhibition of ethylene diamine tetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. J Geochem Explor 163:19–27CrossRefGoogle Scholar
  15. Davidson CM, Thomas RP, Mcvey SE, Perala R, Littlejohn D, Ure AM (1994) Evaluation of a sequential extraction procedure for the speciation of heavy-metals in sediment. Anal Chim Acta 291(3):277–286CrossRefGoogle Scholar
  16. Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (1998) A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta 363:45–55CrossRefGoogle Scholar
  17. Dean JR (2007) Bioavailability, bioaccessibility and mobility of environment contaminants. Analytical Techniques in the Sciences Wiley, Chichester 291pCrossRefGoogle Scholar
  18. Decrée S, De Putter T, Yans J, Dupuis C. (2008) Iron mineralisation in Mio-Pliocene sediments of the Tamra iron mine (Nefza mining district, Tunisia): Mixed influence of pedogenesis and hydrothermal alteration. Ore Geol Rev 33(3):397–410Google Scholar
  19. Decrée S, Marignac C, Putter TD, Deloule E, Liégeois JP, Demaiffe D (2010) Pb–Zn mineralization in a Miocene regional extensional context: the case of the SidiDriss and the Douahria ore deposits (Nefza mining district, northern Tunisia). Ore Geol Rev 34:285–303CrossRefGoogle Scholar
  20. Favas PJC, Pratas J, Elisa M, Gomesa P, Calac V (2011) Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: environmental implications. J Geochem Explor 111:160–171Google Scholar
  21. Feng MH, Shan XQ, Zhang S, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240CrossRefGoogle Scholar
  22. Fernández-Ondoño E, Bacchetta G, Lallena AM, Navarro FB, Ortiz I, Jiménez MN (2017) Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochem Explor 172:133–141CrossRefGoogle Scholar
  23. Gottis CH, Stainfeld P (1952) Les gites metalliferes, anales des mines, Tunis, 122pGoogle Scholar
  24. Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci Total Environ 178:11–20CrossRefGoogle Scholar
  25. Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara mine (Morocco):1. Environmental characterization. Mine Water Environ 27:145–159CrossRefGoogle Scholar
  26. Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569CrossRefGoogle Scholar
  27. Hass A, fine P (2010) Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Critical reviews. Environ Sci Technol 40:365–399CrossRefGoogle Scholar
  28. Hirner AV (1992) Trace element speciation in soil and sediment using sequential chemical extraction methods. Int J Environ Anal Chem 46:77–85CrossRefGoogle Scholar
  29. Houba, VJG, Novozamsky I, Lexmond ThM, Vander Lee JJ (1990) Applicability of 0.01 M CaCl2 as single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes. Soil Sci Plant Anal 21:2281–2290Google Scholar
  30. Jenning SR, Dollhopf DJ, Inskeep WP (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Appl Geochem 15(2):247–255Google Scholar
  31. Juste C (1988) Appréciation de la mobilité et de la biodisponibilité des éléments en traces du sol. Sci Sol 26:103–111Google Scholar
  32. Juste C (1989) Mobilité et biodisponibilité des oligo-éléments, in: Les oligo-éléments et le sol, 2e journées de l’analyse de terre, GEMAS, Éditions Frontières, 5–15Google Scholar
  33. Kabata-Pendias A (1993) Behavioral properties of trace metals in soils. Appl Geochem, Suppl 2:3–9CrossRefGoogle Scholar
  34. Kabata-Pendias A (2004) Soil–plant transfer of trace elements-an environmental issue. Geoderma 122:143–149CrossRefGoogle Scholar
  35. Kennedy VH, Sánchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionucleide and heavy metals availability from soil for root aptake. Analyst 122:89–100CrossRefGoogle Scholar
  36. Lee SH, Lee JS, Choi YJ, Kim JG (2009) In situ stabilization of cadmium, lead, and zinc contaminated soil using various amendments. Chemosphere 77:1069–1075CrossRefGoogle Scholar
  37. Leleyter L, Baraud F (2005) Évaluation de la mobilité des métaux dans les sédiments fluviaux du bassin de la Vire (Normandie, France) par extractions simples ou séquentielles. Compt Rendus Geosci 337:571–579CrossRefGoogle Scholar
  38. Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. J Geochem Explor 116:51–59Google Scholar
  39. Li XD, Thornton I (2001) Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem 16:1693–1706CrossRefGoogle Scholar
  40. Lin Z, Qvarfort U (1996) Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues—a case study of wastes from the sulfuric acid industry in Sweden. Waste Manag 16(8):671–681CrossRefGoogle Scholar
  41. Maiz I, Esnaola MV, Millan E (1997) Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Sci Total Environ 206:107–115CrossRefGoogle Scholar
  42. Maiz I, Arambarri I, Garcia R, Millan E (2000) Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ Pollut 110:3–9CrossRefGoogle Scholar
  43. Marković J, Jović M, Smičiklas I, Pezo L, Šljivić-Ivanović M, Onjia A, Popović A (2016) Chemical speciation of metals in unpolluted soils of different types: correlation with soil characteristics and an ANN modelling approach. J Geochem Explor 165:71–80CrossRefGoogle Scholar
  44. Martínez-Fernández M, Barciela-Alonso MC, Moreda-Piñeiro A, Bermejo-Barrera P (2011) Matrix solid phase dispersion-assisted BCR sequential extraction method for metal partitioning in surface estuarine sediments. Talanta 83:840–849CrossRefGoogle Scholar
  45. Mokma DL, Yli-Halla M, Hartikainen H (2000) Soils in a young landscape on the coast of southern Finland. Agric Food Sci Finland 9:291–302Google Scholar
  46. Moore G, Righter K, Carmichael ISE (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib Mineral Petrol 120:170–179CrossRefGoogle Scholar
  47. Naidu R, Harter RD (1998) Effectiveness of different organic ligands on sorption and extractability of cadmium by soils. Soil Sci Soc Am J 62:644–650CrossRefGoogle Scholar
  48. Negra L (1987) Pétrologie, minéralogie et géochimie des minéralisations et des roches encaissantes des basins associés aux structures tectoniques et magmatiques de l’Oued Bélif et du Jebel Haddada (Nord des Nefza, Tunisie septentrionale). Unpublished PhD thesis Paris Sud University France 223pGoogle Scholar
  49. Novozamsky I, Lexmond TM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int J Environ Anal Chem 51:47–58CrossRefGoogle Scholar
  50. Paul S (2008) Contamination en métaux lourds des eaux de surface et des sédiments du Val de Milluni (Andes Boliviennes) par des déchets miniers. Approches géochimique, minéralogique et hydrochimique, Phd thesis de l’université de Toulouse 381ppGoogle Scholar
  51. Pourret O, Lange B, Houben D, Colinet G, Shtcha M, Faucon MP (2015) Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo). J Geochem Explor 149:87–96CrossRefGoogle Scholar
  52. Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis. I Standardization. Trends Anal Chem 17:198–289Google Scholar
  53. Quevauviller P, Van Der Sloot HA, Ure A, Muntau H, Gomez A, Rauret G (1996) Conclusions of the workshop: harmonization of leaching/extraction tests for environ risk assessment. Sci Total Environ 178:133–139Google Scholar
  54. Rate AW, Robertson AE, Borg AT (2000) Distribution of heavy metals in near-shore sediments of the swan river estuary, Western Australia. Air Soil Poll 124:155–168CrossRefGoogle Scholar
  55. Rauret G (1998) Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46:449–455CrossRefGoogle Scholar
  56. Rauret G, López-Sánchez JF, Sahuquillo A, Quevauviller P (2000) Application of a Modified BCR Sequential Extraction (Three-step) Procedure for the Determination of Extractable Trace Metal Contents in a Sewage Sludge Amended Soil Reference Material (CRM 483), Complemented by a Three-year Stability Study of Acetic Acid and EDTA Extractable Metal Content. J Environ Monit 2(3):228–33Google Scholar
  57. Sainfeld P (1952) Les gîtes plombo-zincifères de la Tunisie, Djebel Hallouf-Sidi Bou Aouane. Anna Mines Géol 9:72–78Google Scholar
  58. Solignac M (1927) Etude géologique de la Tunisie septentrionale. Dir Géner Tx Publics Tunis, 736 pGoogle Scholar
  59. Stefanov, STHR, Ouchev A (1972) Gisement plombo-zincifère de Sidi Driss. Rapport géol. Avec estimation de réserves. Unpublished internal report. Office National des Mines de Tunisie, 71pGoogle Scholar
  60. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  61. Torres E, Auleda M (2013) A sequential extraction procedure for sediments affected by acid mine drainage. J Geochem Explor 128:35–41CrossRefGoogle Scholar
  62. Ure AM, Davis CM (2001) Chemical Speciation in the Environment Blackie Glasgow, 408pGoogle Scholar
  63. Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51(1–4):135–151Google Scholar
  64. Weisener CG, Smart RSC, Gerson AR (2004) A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. Int J Mineral Process 74(1–4):239–249CrossRefGoogle Scholar
  65. Yao Q, Wang X, Jian H, Chen H, Yu Z (2015) Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. Int J Environ Res Public Health 12:6725–6744CrossRefGoogle Scholar
  66. Zoo Z, Qiu R, Zhang W, Dong H, Zhao Z, Zhang T, Wei X, Cai X (2009) The study of operating variables in soil washing with EDTA. Environ Pollut 157:229–236CrossRefGoogle Scholar

Copyright information

© Saudi Society for Geosciences 2018

Authors and Affiliations

  • Mariem Trifi
    • 1
    • 2
  • Mohja Dermech
    • 3
  • Charef Abdelkrim
    • 1
  • Rim Azouzi
    • 1
  • Bilel Hjiri
    • 1
  1. 1.Laboratoire de GéoressourcesCentre des Recherches et Technologies des EauxSolimanTunisia
  2. 2.Faculté des Sciences de Bizerte-ZerzounaUniversité de CarthageBizerteTunisia
  3. 3.Laboratoire Ressources Minérales et Environnement, Faculté de Sciences of TunisUniversité Tunis El ManarTunisTunisia

Personalised recommendations