De toekomst van het cardiovasculair risicoprofiel

  • Ralf Harskamp
  • Petra van Peet
  • Mike Peters
  • Henk van Weert
Beschouwing

Samenvatting

Het in Nederland gebruikte risicomodel voor cardiovasculair risicomanagement gaat uit van puur klinische parameters en is niet bijzonder nauwkeurig. Aanvullende risico-indicatoren vereisen beeldvormend onderzoek of bloedonderzoek, maar kunnen wel relevant zijn voor mensen met een matig verhoogd risico (10-20%). De calciumscore op een coronaire CT-scan lijkt de grootste bijdrage te kunnen leveren. Ook de enkel-armindex, carotisechografie, high-sensitivity CRP en cardiale biomarkers zoals high-sensitivity troponine en (NT-pro)BNP zijn veelbelovend, maar hebben minder impact. Misschien is er in de toekomst plaats voor een multimodale teststrategie die deze indicatoren combineert. Hun waarde in de huisartsenpraktijk en hun plaats in toekomstige CVRM-protocollen moeten echter nog worden onderzocht.

Literatuur

  1. 1.
    Hilderink HB. Ziektelast in DALY’s: Ziektelast naar risicofactor [internet]. Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu, 2017. www.volksgezondheidenzorg.info, geraadpleegd maart 2018.
  2. 2.
    Bots ML, Buddeke J, Van Dis I, Vaartjes I, Visseren FL. Hart- en vaatziekten in Nederland, 2017. Den Haag: Hartstichting, 2017.Google Scholar
  3. 3.
    NHG-Standaard Cardiovasculair risicomanagement (tweede herziening). Huisarts Wet 2012;55:14-28.Google Scholar
  4. 4.
    MacNamara J, Eapen DJ, Quyyumi A, Sperling L. Novel biomarkers for cardiovascular risk assessment: current status and future directions. Future Cardiol 2015;11:597-613.Google Scholar
  5. 5.
    Cooney MT, Dudina AL, Graham IM. Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol 2009;54:1209-27.Google Scholar
  6. 6.
    Van Dis I, Kromhout D, Geleijnse JM, Boer JM, Verschuren WM. Evaluation of cardiovascular risk predicted by different SCORE equations: the Netherlands as an example. Eur J Cardiovasc Prev Rehabil 2010;17:244-9.Google Scholar
  7. 7.
    D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117:743-53.Google Scholar
  8. 8.
    Goff DC, Jr., Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014;129:S49-73.Google Scholar
  9. 9.
    HeartScore: The interactive tool for predicting and managing the risk of heart attack and stroke [internet]. Brussels: European Society of Cardiology; 2018. https://heartscore.org, geraadpleegd maart 2018.
  10. 10.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37:2315-81.Google Scholar
  11. 11.
    Joint British Societies for the prevention of cardiovascular disease. JBS3 risk calculator [internet]. London: British Cardiovascular Society, 2018. www.jbs3risk.com, geraadpleegd maart 2018.
  12. 12.
    Mallikethi-Reddy S, Briasoulis A, Akintoye E, Afonso L. Novel biomarkers with potential for cardiovascular risk reclassification. Biomarkers 2017;22:189-99.Google Scholar
  13. 13.
    Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 2010;56:1397-406.Google Scholar
  14. 14.
    Patel J, Al Rifai M, Blaha MJ, Budoff MJ, Post WS, Polak JF, et al. Coronary artery calcium improves risk assessment in adults with a family history of premature coronary heart disease: results from Multiethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2015;8:e003186.Google Scholar
  15. 15.
    Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA 2008;300:197-208.Google Scholar
  16. 16.
    Peters SA, Den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart 2012;98:177-84.Google Scholar
  17. 17.
    Gepner AD, Young R, Delaney JA, Tattersall MC, Blaha MJ, Post WS, et al. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima-media thickness for cardiovascular disease prediction in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2015;8; e002262.Google Scholar
  18. 18.
    Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Volzke H, Tuomainen TP, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet 2012;379:2053-62.Google Scholar
  19. 19.
    Auer R, Bauer DC, Marques-Vidal P, Butler J, Min LJ, Cornuz J, et al. Association of major and minor ECG abnormalities with coronary heart disease events. JAMA 2012;307:1497-505.Google Scholar
  20. 20.
    Bhatia RS, Bouck Z, Ivers NM, Mecredy G, Singh J, Pendrith C, et al. Electrocardiograms in low-risk patients undergoing an annual health examination. JAMA Intern Med 2017;177:1326-33.Google Scholar
  21. 21.
    Groot A, Bots ML, Rutten FH, den Ruijter HM, Numans ME, Vaartjes I. Measurement of ECG abnormalities and cardiovascular risk classification: a cohort study of primary care patients in the Netherlands. Br J Gen Pract 2015;65:e1-8.Google Scholar
  22. 22.
    Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 2007;297:611-9.Google Scholar
  23. 23.
    De Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2010;304:2503-12.Google Scholar
  24. 24.
    McEvoy JW, Chen Y, Ndumele CE, Solomon SD, Nambi V, Ballantyne CM, et al. Six-year change in high-sensitivity cardiac troponin T and risk of subsequent coronary heart disease, heart failure, and death. JAMA Cardiol 2016;1:519-28.Google Scholar
  25. 25.
    Willeit P, Welsh P, Evans JDW, Tschiderer L, Boachie C, Jukema JW, et al. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants. J Am Coll Cardiol 2017;70:558-68.Google Scholar
  26. 26.
    Xiao W, Cao R, Liu Y, Wang F, Bai Y, Wu H, et al. Association of high-sensitivity cardiac troponin T with mortality and cardiovascular events in a community-based prospective study in Beijing. BMJ Open 2017;7:e013431.Google Scholar
  27. 27.
    Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 2004;350:655-63.Google Scholar
  28. 28.
    Sato K, Segawa T, Tanaka F, Takahashi T, Tanno K, Ohsawa M, et al. Cardiovascular risk stratification with plasma B-type natriuretic peptide levels in a community-based hypertensive cohort. Am J Cardiol 2014;113:682-6.Google Scholar
  29. 29.
    Kara K, Mahabadi AA, Berg MH, Lehmann N, Mohlenkamp S, Kalsch H, et al. Predicting risk of coronary events and all-cause mortality: role of B-type natriuretic peptide above traditional risk factors and coronary artery calcium scoring in the general population: the Heinz Nixdorf Recall Study. Eur J Prev Cardiol 2014;21:1171-9.Google Scholar
  30. 30.
    Welsh P, Doolin O, Willeit P, Packard C, Macfarlane P, Cobbe S, et al. N-terminal pro-B-type natriuretic peptide and the prediction of primary cardiovascular events: results from 15-year follow-up of WOSCOPS. Eur Heart J 2013;34:443-50.Google Scholar
  31. 31.
    Jørgensen PG, Jensen JS, Appleyard M, Jensen GB, Mogelvang R. Plasma pro-brain natriuretic peptide and electrocardiographic changes in combination improve risk prediction in persons without known heart disease. Int J Cardiol. 2015;201:104-9.Google Scholar
  32. 32.
    Blaha MJ, Cainzos-Achirica M, Greenland P, McEvoy JW, Blankstein R, Budoff MJ, et al. Role of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2016;133:849-58.Google Scholar
  33. 33.
    De Lemos JA, Ayers CR, Levine B, deFilippi CR, Wang TJ, Hundley WG, et al. Multimodality strategy for cardiovascular risk assessment: performance in 2 population-based cohorts. Circulation. 2017;135(22):2119-32.Google Scholar
  34. 34.
    Tzoulaki I, Siontis KC, Evangelou E, Ioannidis JP. Bias in associations of emerging biomarkers with cardiovascular disease. JAMA Intern Med 2013;173:664-71.Google Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2018

Authors and Affiliations

  • Ralf Harskamp
    • 1
  • Petra van Peet
    • 2
  • Mike Peters
    • 3
  • Henk van Weert
    • 4
  1. 1.Postdoctoraal onderzoeker in opleiding tot huisartsAMC, afdeling HuisartsgeneeskundeAmsterdamNederland
  2. 2.Huisarts en universitair hoofddocentLUMC, afdeling Public health en eerstelijnsgeneeskundeLeidenNederland
  3. 3.Internist en staflid Interne-ouderengeneeskundeVUmc, afdeling Interne geneeskundeAmsterdamNederland
  4. 4.Hoogleraar HuisartsgeneeskundeAMC, afdeling HuisartsgeneeskundeAmsterdamNederland

Personalised recommendations