Contemporary Issues in Quantitative Myocardial Perfusion CMR Imaging

  • Austin A. Robinson
  • Michael Salerno
  • Christopher M. KramerEmail author
Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Cardiac Magnetic Resonance


Purpose of Review

This review highlights the development and application of quantitative myocardial perfusion by cardiac magnetic resonance (CMR) and discusses recent innovations in this area.

Recent Findings

First pass, contrast-enhanced CMR can accurately quantify myocardial perfusion in order to diagnose obstructive coronary artery disease and microvascular dysfunction. Quantitative analysis conveys additional prognostic information beyond other CMR findings. New, fully automated techniques may aid standardization of methods across centers.


CMR quantitative perfusion has robust performance for the diagnosis of obstructive coronary disease and microvascular dysfunction and conveys prognostic information. Adoption of automated post-processing and standardized protocols will further strengthen CMR in its position as the modality of choice for the evaluation of possible myocardial ischemia.


Cardiac magnetic resonance Myocardial perfusion imaging Myocardial blood flow Myocardial ischemia Microvascular disease Coronary artery disease 



This work was supported by grants NIH T32 EB003841 and NIH HL131919-01A1.

Compliance with Ethical Standards

Conflicts of Interest

Austin A. Robinson declares no conflicts of interest.

Michael Salerno has received a grant from Astra Zeneca.

Christopher M. Kramer has received consulting fees from Bayer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492.CrossRefGoogle Scholar
  2. 2.
    Moss AJ, Williams MC, Newby DE, Nicol ED. The updated NICE guidelines: cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep. 2017;10(5):15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Herzog CA, Natwick T, Li S, Charytan DM. Comparative utilization and temporal trends in cardiac stress testing in US Medicare beneficiaries with and without chronic kidney disease. JACC Cardiovasc Imaging 2018.
  4. 4.
    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson D, Burstein D, Edelman R. First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology. 1990;174(3):757–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33(1):87–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G, et al. European cardiovascular magnetic resonance (EuroCMR) registry–multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15(1):9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15(1):35.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hussain ST, Paul M, Plein S, McCann GP, Shah AM, Marber MS, et al. Design and rationale of the MR-INFORM study: stress perfusion cardiovascular magnetic resonance imaging to guide the management of patients with stable coronary artery disease. J Cardiovasc Magn Reson. 2012;14(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sammut EC, Villa AD, Di Giovine G, Dancy L, Bosio F, Gibbs T, et al. Prognostic value of quantitative stress perfusion cardiac magnetic resonance. JACC Cardiovasc Imaging 2017;11(5):686–94.Google Scholar
  11. 11.
    Thomson LE, Fieno DS, Abidov A, Slomka PJ, Hachamovitch R, Saouaf R, et al. Added value of rest to stress study for recognition of artifacts in perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(5):733–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen BV, Stillman AE, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology. 1997;204(2):373–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12(1):57.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Klocke FJ, Simonetti OP, Judd RM, Kim RJ, Harris KR, Hedjbeli S, et al. Limits of detection of regional differences in vasodilated flow in viable myocardium by first-pass magnetic resonance perfusion imaging. Circulation. 2001;104(20):2412–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel P, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103(18):2230–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffman JI. Problems of coronary flow reserve. Ann Biomed Eng. 2000;28(8):884–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee DC, Johnson NP. Quantification of absolute myocardial blood flow by magnetic resonance perfusion imaging. JACC Cardiovasc Imaging. 2009;2(6):761–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Investig Radiol. 1983;18(1):94–9.CrossRefGoogle Scholar
  20. 20.
    Pack NA, DiBella EV. Comparison of myocardial perfusion estimates from dynamic contrast-enhanced magnetic resonance imaging with four quantitative analysis methods. Magn Reson Med. 2010;64(1):125–37.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Broadbent DA, Biglands JD, Larghat A, Sourbron SP, Radjenovic A, Greenwood JP, et al. Myocardial blood flow at rest and stress measured with dynamic contrast-enhanced MRI: comparison of a distributed parameter model with a fermi function model. Magn Reson Med. 2013;70(6):1591–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Cernicanu A, Axel L. Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Acad Radiol. 2006;13(6):686–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu L, Jacobs M, Benovoy M, Ta AD, Conn HM, Winkler S, et al. Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2018;11(5):697–707.PubMedCrossRefGoogle Scholar
  24. 24.
    Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Cardiol. 2018;25(1):269–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman DS, et al. CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc Imaging. 2016;9(11):1338–48.PubMedCrossRefGoogle Scholar
  26. 26.
    Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Douglas PS, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60(24):e44–e164.PubMedCrossRefGoogle Scholar
  27. 27.
    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. Task force members; ESC Committee for practice guidelines; document reviewers. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagel E. MR-INFORM: stress perfusion imaging to guide the management of patients with stable coronary artery disease. Presentation Session 2017:401–412.Google Scholar
  29. 29.
    Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, et al. Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol. 2010;56(7):561–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Foley JR, Kidambi A, Biglands JD, Maredia N, Dickinson CJ, Plein S, et al. A comparison of cardiovascular magnetic resonance and single photon emission computed tomography (SPECT) perfusion imaging in left main stem or equivalent coronary artery disease: a CE-MARC substudy. J Cardiovasc Magn Reson. 2017;19(1):84.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ta AD, Hsu L, Conn HM, Winkler S, Greve AM, Shanbhag SM, et al. Fully quantitative pixel-wise analysis of cardiovascular magnetic resonance perfusion improves discrimination of dark rim artifact from perfusion defects associated with epicardial coronary stenosis. J Cardiovasc Magn Reson. 2018;20(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chiribiri A, Hautvast GL, Lockie T, Schuster A, Bigalke B, Olivotti L, et al. Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus FFR. JACC Cardiovasc Imaging. 2013;6(5):600–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Klocke FJ, Lee DC. Probing transmural myocardial perfusion with CMR. JACC Cardiovasc Imaging. 2014;7(1):23–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Mordini FE, Haddad T, Hsu L, Kellman P, Lowrey TB, Aletras AH, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging. 2014;7(1):14–22.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zorach B, Shaw PW, Bourque J, Kuruvilla S, Balfour PC, Yang Y, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-Herold M, Forfar JC, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol. 2018;71(9):957–68.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lipinski MJ, McVey CM, Berger JS, Kramer CM, Salerno M. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62(9):826–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Becker MA, Cornel JH, Van de Ven, Peter M, van Rossum AC, Allaart CP, Germans T. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: a review and meta-analysis. JACC: Cardiovasc Imaging 2018;11(9):1274–84.Google Scholar
  39. 39.
    Hsu L, Kellman P, Arai AE. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J Magn Reson Imaging. 2008;27(4):793–801.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang Y, Kramer CM, Shaw PW, Meyer CH, Salerno M. First-pass myocardial perfusion imaging with whole-heart coverage using L1-SPIRiT accelerated variable density spiral trajectories. Magn Reson Med. 2016;76(5):1375–87.PubMedCrossRefGoogle Scholar
  41. 41.
    Manka R, Paetsch I, Kozerke S, Moccetti M, Hoffmann R, Schroeder J, et al. Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Heart J. 2012;33(16):2016–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging. 2017;10(6):e003951.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sharif B, Dharmakumar R, LaBounty T, Arsanjani R, Shufelt C, Thomson L, et al. Towards elimination of the dark-rim artifact in first-pass myocardial perfusion MRI: removing Gibbs ringing effects using optimized radial imaging. Magn Reson Med. 2014;72(1):124–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Papanastasiou G, Williams M, Dweck M, Mirsadraee S, Weir N, Fletcher A, et al. Multimodality quantitative assessments of myocardial perfusion using dynamic contrast enhanced magnetic resonance and 15 O-labeled water positron emission tomography imaging. IEEE Trans Radiat Plasma Med Sci. 2018;2(3):259–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Vasquez AF, Johnson NP, Gould KL. Variation in quantitative myocardial perfusion due to arterial input selection. JACC Cardiovasc Imaging. 2013;6(5):559–68.PubMedCrossRefGoogle Scholar
  46. 46.
    van Dijk R, van Assen M, Vliegenthart R, de Bock G, van der Harst P, Oudkerk M. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis. J Cardiovasc Magn Reson. 2017;19(1):92.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Biglands JD, Ibraheem M, Magee DR, Radjenovic A, Plein S, Greenwood JP. Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a CE-MARC substudy. JACC Cardiovasc Imaging. 2018;11(5):711–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Kramer CM, Chandrashekhar Y. Quantitative myocardial perfusion CMR: is the game worth the candle? JACC Cardiovasc Imaging. 2018;11(5):784–6.PubMedCrossRefGoogle Scholar
  49. 49.
    • Brown LA, Onciul SC, Broadbent DA, Johnson K, Fent GJ, Foley JR, et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson. 2018;20(1):48 This study demonstrates the ability to perform inline, fully automated, quantification of myocardial blood flow that included free breathing motion correction with good intra-study and inter-study variability. PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wacker CM, Bauer WR. Neue Ansätze der Magnetresonanztomographie zur Beschreibung myokardialer Mikrozirkulationsparameter am Menschen. Herz. 2003;28(2):74–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging. 2016;9(1):27–36.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60(16):1546–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Austin A. Robinson
    • 1
  • Michael Salerno
    • 1
    • 2
    • 3
  • Christopher M. Kramer
    • 1
    • 2
    Email author
  1. 1.Department of MedicineUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Department of Radiology and Medical ImagingUniversity of Virginia Health SystemCharlottesvilleUSA
  3. 3.Department of Biomedical EngineeringUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations