Advertisement

Stress Echocardiography: the Role in Assessing Valvular Heart Diseases

  • Sasan R. Raissi
  • Menhel Kinno
  • Vera H. Rigolin
Echocardiography (F Asch and S Costa, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Echocardiography

Abstract

Purpose of Review

Stress echocardiography (SE) has clinical utility beyond its conventional use for the evaluation of myocardial ischemia. More specifically, SE has been shown to have significant clinical value in patients with valvular heart disease (VHD), hypertrophic cardiomyopathy (HCM), and congenital heart disease (CHD). Echocardiography laboratories providing services to such patient should be familiar with the principals of SE beyond coronary artery disease to ensure its optimum application and performance.

Recent Findings

The increased demand for SE standardization specifically in patients with VHD instigated recent recommendations by relevant cardiology societies.

Summary

This manuscript reviews the key concepts in performance and interpretation of hemodynamic SE in patients with VHD and HCM, including patient selection, stress modality of choice, and integration of all diagnostic and prognostic information.

Keywords

Valvular heart disease Stress echocardiography Hypertrophic cardiomyopathy 

Abbreviations

ACC

American College of Cardiology

AHA

American Heart Association

CR

Contractile reserve

CW

Continuous-wave

EACTS

European Association for Cardio-Thoracic Surgery

Echo

Echocardiography

ESC

European Society of Cardiology

FR

Flow reserve

HCM

Hypertrophic cardiomyopathy

LVOT

Left ventricle outflow tract

MS

Mitral stenosis

PASP

Pulmonary artery systolic pressure

PW

Pulse-wave

SE

Stress echocardiography

Notes

Compliance with Ethical Standards

Conflict of Interest

All authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

12410_2018_9473_MOESM1_ESM.mov (6.2 mb)
Videos 1 MR jet at rest in apical 4-chamber view. (MOV 6331 kb)
12410_2018_9473_MOESM2_ESM.mov (5.8 mb)
Video 2 Post-exercise MR. MR = mitral regurgitation (MOV 5943 kb)
12410_2018_9473_MOESM3_ESM.mov (5.7 mb)
Video 3 Exercise SE in a symptomatic patient with moderate mitral stenosis. Apical 4-chamber showing hockey-stick appearance of the anterior mitral leaflet with severe left atrial enlargement. SE = stress echocardiography (MOV 5837 kb)
12410_2018_9473_MOESM4_ESM.mov (2.8 mb)
Video 4 Exercise SE in an asymptomatic patient with hypertrophic cardiomyopathy. Apical 5-chamber with color Doppler reveals flow acceleration in the LVOT with SAM of the anterior mitral leaflet and the characteristic posteriorly-directed MR. SE = stress echocardiography, LVOT = left ventricular outflow tract, MR = mitral regurgitation, SAM = systolic anterior motion (MOV 2868 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Picano E, Pellikka PA. Stress echo applications beyond coronary artery disease. Eur Heart J. 2014;35:1033–40.CrossRefGoogle Scholar
  2. 2.
    Kane GC, Hepinstall MJ, Kidd GM, Kuehl CA, Murphy AT, Nelson JM, et al. Safety of stress echocardiography supervised by registered nurses: results of a 2-year audit of 15,404 patients. J Am Soc Echocardiogr. 2008;21:337–41.CrossRefGoogle Scholar
  3. 3.
    • Lancellotti P, Budtts C et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. 2017;30(2):101–138. Evidence-based recommendation from the ASE and EACVI for the use of echo in non-ischemic heart disease. Google Scholar
  4. 4.
    Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E. End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int. 2013;2013:235194.CrossRefGoogle Scholar
  5. 5.
    Lowenstein JA, Caniggia C, Rousse G, Amor M, Sanchez ME, Alasia D, et al. Coronary flow velocity reserve during pharmacologic stress echocardiography with normal contractility adds important prognostic value in diabetic and nondiabetic patients. J Am Soc Echocardiogr. 2014;27:1113–9.CrossRefGoogle Scholar
  6. 6.
    Bonow R. Chronic mitral regurgitation and aortic regurgitation: have indications for surgery changed? J Am Coll Cardiol. 2013;61:693–6.CrossRefGoogle Scholar
  7. 7.
    Garbi M, Chambers J, Vannan MA, Lancellotti P. Valve stress echocardiography: a practical guide for referral, procedure, reporting, and clinical implementation of results from the HAVEC Group. J Am Coll Cardiol Img. 2015;8:724–36.CrossRefGoogle Scholar
  8. 8.
    Picano E, Pibarot P, Lancellotti P, Monin JL, Bonow RO. The emerging role of exercise testing and stress echocardiography in valvular heart disease. J Am Coll Cardiol. 2009;54:2251–60.CrossRefGoogle Scholar
  9. 9.
    Lancellotti P, Magne J. Stress echocardiography in regurgitant valve disease. Circ Cardiovasc Imaging. 2013;6:840–9.CrossRefGoogle Scholar
  10. 10.
    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22:1–23 quiz 101-2.CrossRefGoogle Scholar
  11. 11.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:e57–185.CrossRefGoogle Scholar
  12. 12.
    • Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739–91 Evidence-based recommendation from the ESC/EACTS for the management of valvular heart disease. CrossRefGoogle Scholar
  13. 13.
    • Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70:252–89 Evidence-based recommendation from the AHA/ACC for the management of valvular heart disease. CrossRefGoogle Scholar
  14. 14.
    Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988;60:299–308.CrossRefGoogle Scholar
  15. 15.
    Nunes MC, Tan TC, Elmariah S, et al. The echo score revisited: impact of incorporating commissural morphology and leaflet displacement to the prediction of outcome for patients undergoing percutaneous mitral valvuloplasty. Circulation. 2014;129:886–95.CrossRefGoogle Scholar
  16. 16.
    Cheitlin MD. Stress echocardiography in mitral stenosis: when is it useful? J Am Coll Cardiol. United States, 2004;402–4.Google Scholar
  17. 17.
    Cheriex EC, Pieters FA, Janssen JH, de Swart H, Palmans-Meulemans A. Value of exercise Doppler-echocardiography in patients with mitral stenosis. Int J Cardiol. 1994;45:219–26.CrossRefGoogle Scholar
  18. 18.
    Reis G, Motta MS, Barbosa MM, Esteves WA, Souza SF, Bocchi EA. Dobutamine stress echocardiography for noninvasive assessment and risk stratification of patients with rheumatic mitral stenosis. J Am Coll Cardiol. 2004;43:393–401.CrossRefGoogle Scholar
  19. 19.
    Gentry Iii JL, Phelan D, Desai MY, Griffin BP. The role of stress echocardiography in valvular heart disease: a current appraisal. Cardiology. 2017;137:137–50.CrossRefGoogle Scholar
  20. 20.
    Roshdy HS, Meshrif AM, El D II. Value of the mitral valve resistance in evaluation of symptomatic patients with mild and moderate mitral stenosis--a dobutamine stress echocardiographic study. Echocardiography. 2014;31:347–52.CrossRefGoogle Scholar
  21. 21.
    Brochet E, Detaint D, Fondard O, et al. Early hemodynamic changes versus peak values: what is more useful to predict occurrence of dyspnea during stress echocardiography in patients with asymptomatic mitral stenosis? J Am Soc Echocardiogr. 2011;24:392–8.CrossRefGoogle Scholar
  22. 22.
    Wahi S, Haluska B, Pasquet A, Case C, Rimmerman CM, Marwick TH. Exercise echocardiography predicts development of left ventricular dysfunction in medically and surgically treated patients with asymptomatic severe aortic regurgitation. Heart. 2000;84:606–14.CrossRefGoogle Scholar
  23. 23.
    Verseckaite R, Mizariene V, Montvilaite A et al. The predictive value of left ventricular myocardium mechanics evaluation in asymptomatic patients with aortic regurgitation and preserved left ventricular ejection fraction. A long-term speckle-tracking echocardiographic study. Echocardiography. 2018.Google Scholar
  24. 24.
    Das P, Rimington H, Chambers J. Exercise testing to stratify risk in aortic stenosis. Eur Heart J. 2005;26(13):1309–13.CrossRefGoogle Scholar
  25. 25.
    Marechaux S, Hachicha Z, Bellouin A, Dumesnil JG, Meimoun P, Pasquet A, et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J. 2010;31:1390–7.CrossRefGoogle Scholar
  26. 26.
    Lancellotti P, Lebois F, Simon M, Tombeux C, Chauvel C, Pierard LA. Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation. 2005;112:I377–82.PubMedGoogle Scholar
  27. 27.
    Raissi S, Thomas J, Bonow R. Transcatheter aortic valve replacement in low-flow aortic stenosis: treat the flow or treat the patient? J Am Heart Assoc. 2018;7(8):e008932.  https://doi.org/10.1161/JAHA.118.008932.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Maron BJ, Spirito P, Roman MJ, Paranicas M, Okin PM, Best LG, et al. Prevalence of hypertrophic cardiomyopathy in a population-based sample of American Indians aged 51 to 77 years (the Strong Heart Study). Am J Cardiol. 2004;93:1510–4.CrossRefGoogle Scholar
  29. 29.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92:785–9.CrossRefGoogle Scholar
  30. 30.
    Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med. 2004;116:14–8.CrossRefGoogle Scholar
  31. 31.
    Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. 2014;64:83–99.CrossRefGoogle Scholar
  32. 32.
    • Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124:e783–831 Evidence-based recommendation from the ACCF/AHA for the management of hypertrophic cardiomyopathy. PubMedGoogle Scholar
  33. 33.
    • Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79 Evidence-based recommendation from the ESC for the management of hypertrophic cardiomyopathy. CrossRefGoogle Scholar
  34. 34.
    Rowin EJ, Maron BJ, Olivotto I, Maron MS. Role of exercise testing in hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10:1374–86.CrossRefGoogle Scholar
  35. 35.
    Feiner E, Arabadjian M, Winson G, Kim B, Chaudhry F, Sherrid MV. Post-prandial upright exercise echocardiography in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;61:2487–8.CrossRefGoogle Scholar
  36. 36.
    Prasad M, Geske JB, Sorajja P, Ommen SR, Schaff HV, Gersh BJ, et al. Hemodynamic changes in systolic and diastolic function during isoproterenol challenge predicts symptomatic response to myectomy in hypertrophic cardiomyopathy with labile obstruction. Catheter Cardiovasc Interv. 2016;88:962–70.CrossRefGoogle Scholar
  37. 37.
    Schaff HV, Dearani JA, Ommen SR, Sorajja P, Nishimura RA. Expanding the indications for septal myectomy in patients with hypertrophic cardiomyopathy: results of operation in patients with latent obstruction. J Thorac Cardiovasc Surg. 2012;143:303–9.CrossRefGoogle Scholar
  38. 38.
    Tower-Rader A, Betancor J, Popovic ZB, Sato K, Thamilarasan M, Smedira NG, et al. Incremental prognostic utility of left ventricular global longitudinal strain in hypertrophic obstructive cardiomyopathy patients and preserved left ventricular ejection fraction. J Am Heart Assoc. 2017;6.Google Scholar
  39. 39.
    Pozios I, Pinheiro A, Corona-Villalobos C, Sorensen LL, Dardari Z, Liu HY, et al. Rest and stress longitudinal systolic left ventricular mechanics in hypertrophic cardiomyopathy: implications for prognostication. J Am Soc Echocardiogr. 2018;31:578–86.CrossRefGoogle Scholar
  40. 40.
    Fujimoto K, Inoue K, Saito M et al. Incremental value of left atrial active function measured by speckle tracking echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography. 2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sasan R. Raissi
    • 1
  • Menhel Kinno
    • 1
  • Vera H. Rigolin
    • 1
  1. 1.Northwestern University Feinberg School of MedicineBluhm Cardiovascular InstituteChicagoUSA

Personalised recommendations