Intravascular Imaging for Chronic Total Occlusion Intervention

  • Iosif Xenogiannis
  • Peter Tajti
  • Dimitri Karmpaliotis
  • Roberto Garbo
  • Andrea Gagnor
  • M. Nicholas Burke
  • Emmanouil S. BrilakisEmail author
Intravascular Imaging (MC Alraies, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Intravascular Imaging


Purpose of Review

We sought to summarize the current evidence on use of intravascular imaging (with intravascular ultrasound [IVUS] or optical coherence tomography [OCT]) in chronic total occlusion (CTO) percutaneous coronary intervention (PCI).

Recent Findings

Utilization of intravascular imaging in CTO PCI is increasing over time, both to facilitate CTO crossing and for optimization of the final result. OCT is used less often than IVUS due to its lower depth of penetration and need for contrast injection.


Intravascular imaging has multiple uses in CTO PCI: (a) it can facilitate CTO crossing by resolving proximal cap ambiguity and facilitating and confirming true lumen wire re-entry in case of initial subintimal wire crossing in both the antegrade and retrograde direction (for example by selecting the appropriate balloon size during the reverse controlled antegrade and retrograde tracking (reverse CART) technique; (b) it can be used to optimize the PCI result by ensuring good stent expansion and stent strut apposition, which may in turn result in lower rates of subsequent in-stent restenosis and stent thrombosis; (c) can facilitate evaluation and treatment of complications.


Intravascular imaging Chronic total occlusions IVUS CTO Percutaneous coronary interventions Coronary artery disease 


Compliance with Ethical Standards

Conflict of Interest

Dr. Karmpaliotis reports speaker honoraria from Abbott Vascular, Boston Scientific, Medtronic, and Vascular Solutions.

Dr. Garbo is a consultant for Philips Volcano Europe.

Dr. Burke is a consultant for Abbott Vascular and Boston Scientific.

Dr. Brilakis reports consulting/speaker honoraria from Abbott Vascular, American Heart Association (associate editor Circulation), Amgen, Boston Scientific, Cardiovascular Innovations Foundation (Board of Directors), CSI, Elsevier, GE Healthcare, and Medtronic; research support from Siemens, Regeneron, and Osprey. Shareholder: MHI Ventures. Board of Trustees: Society of Cardiovascular Angiography and Interventions.

All other authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Galassi AR, Sianos G, Werner GS, Escaned J, Tomasello SD, Boukhris M, et al. Retrograde recanalization of chronic total occlusions in Europe: procedural, in-hospital, and long-term outcomes from the multicenter ERCTO registry. J Am Coll Cardiol. 2015;65(22):2388–400. Scholar
  2. 2.
    Maeremans J, Walsh S, Knaapen P, Spratt JC, Avran A, Hanratty CG, et al. The hybrid algorithm for treating chronic total occlusions in Europe: the RECHARGE registry. J Am Coll Cardiol. 2016;68(18):1958–70. Scholar
  3. 3.
    Morino Y, Kimura T, Hayashi Y, Muramatsu T, Ochiai M, Noguchi Y, et al. In-hospital outcomes of contemporary percutaneous coronary intervention in patients with chronic total occlusion insights from the J-CTO registry (multicenter CTO registry in Japan). JACC Cardiovasc Interv. 2010;3(2):143–51. Scholar
  4. 4.
    Tajti P, Karmpaliotis D, Alaswad K, Jaffer FA, Yeh RW, Patel M, et al. The hybrid approach to chronic total occlusion percutaneous coronary intervention: update from the PROGRESS CTO registry. JACC Cardiovasc Interv. 2018;11:1325–35. Scholar
  5. 5.
    Wilson WM, Walsh SJ, Yan AT, Hanratty CG, Bagnall AJ, Egred M, et al. Hybrid approach improves success of chronic total occlusion angioplasty. Heart. 2016;102(18):1486–93. Scholar
  6. 6.
    Arroyo-Ucar E, Moreno R, Garcia E, Teles R, Rumoroso JR, Carvalho HC, et al. Drug-eluting stent thrombosis in the treatment of chronic total coronary occlusions: incidence, presentation and related factors. Data from the CIBELES trial. Rev Port Cardiol. 2015;34(3):193–9. Scholar
  7. 7.
    Azzalini L, Demir OM, Gasparini GL, Grancini L, La Manna A, Ojeda S, et al. Outcomes of a novel thin-strut bioresorbable-polymer sirolimus-eluting stent in patients with chronic total occlusions: a multicenter registry. Int J Cardiol. 2018;258:36–41. Scholar
  8. 8.
    Kandzari DE, Kini AS, Karmpaliotis D, Moses JW, Tummala PE, Grantham JA, et al. Safety and effectiveness of everolimus-eluting stents in chronic total coronary occlusion revascularization: results from the EXPERT CTO multicenter trial (evaluation of the XIENCE coronary stent, performance, and technique in chronic total occlusions). JACC Cardiovasc Interv. 2015;8(6):761–9. Scholar
  9. 9.
    • Karacsonyi J, Alaswad K, Jaffer FA, Yeh RW, Patel M, Bahadorani J, et al. Use of intravascular imaging during chronic total occlusion percutaneous coronary intervention: insights from a contemporary multicenter registry. J Am Heart Assoc. 2016;5(8). This report from a multicenter US CTO PCI registry demonstrated 38% use of intravascular imaging during CTO PCI; intravascular imaging was used to facilitate crossing in 35.7% and for stent sizing and stent optimization in the remaining cases.
  10. 10.
    • Kim BK, Shin DH, Hong MK, Park HS, Rha SW, Mintz GS, et al. Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study. Circ Cardiovasc Interv. 2015;8(7):e002592. This randomized-controlled trial of IVUS vs. angiographic guidance after CTO crossing demonstarted that IVUS-guided CTO intervention was associated with lower 12-month major adverse cardiac event rate (2.6% vs. 7.1%; p= 0.035).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    • Tian NL, Gami SK, Ye F, Zhang JJ, Liu ZZ, Lin S, et al. Angiographic and clinical comparisons of intravascular ultrasound-versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: two-year results from a randomised AIR-CTO study. EuroIntervention. 2015;10(12):1409–17. This randomized-controlled trial of IVUS vs. angiographic guidance of stenting of CTO lesions demonstrated lower in-stent late lumen loss in the IVUS-guided group at one-year follow-up (0.28 ± 0.48 mm vs. 0.46 ± 0.68 mm, p= 0.025), as well as lower restenosis of the “in-true-lumen” stent (3.9% vs. 13.7%, p= 0.021). CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Koganti S, Kotecha T, Rakhit RD. Choice of intracoronary imaging: when to use intravascular ultrasound or optical coherence tomography. Interv Cardiol (London, England). 2016;11(1):11–6. Scholar
  13. 13.
    Estevez-Loureiro R, Ghione M, Kilickesmez K, Agudo P, Lindsay A, Di Mario C. The role for adjunctive image in pre-procedural assessment and peri-procedural management in chronic total occlusion recanalisation. Curr Cardiol Rev. 2014;10(2):120–6.CrossRefGoogle Scholar
  14. 14.
    Christakopoulos GE, Karmpaliotis D, Alaswad K, Yeh RW, Jaffer FA, Wyman RM, et al. Contrast utilization during chronic total occlusion percutaneous coronary intervention: insights from a contemporary multicenter registry. J Invasive Cardiol. 2016;28(7):288–94.Google Scholar
  15. 15.
    Liu Y, Liu Y, Li H, Zhou Y, Guo W, Duan C, et al. Percutaneous coronary intervention for chronic total occlusion improved prognosis in patients with renal insufficiency at high risk of contrast-induced nephropathy. Sci Rep. 2016;6:21426.
  16. 16.
    Sapontis J, Christopoulos G, Grantham JA, Wyman RM, Alaswad K, Karmpaliotis D, et al. Procedural failure of chronic total occlusion percutaneous coronary intervention: insights from a multicenter US registry. Catheter Cardiovasc Interv. 2015;85(7):1115–22. Scholar
  17. 17.
    Alessandrino G, Chevalier B, Lefevre T, Sanguineti F, Garot P, Unterseeh T, et al. A clinical and angiographic scoring system to predict the probability of successful first-attempt percutaneous coronary intervention in patients with total chronic coronary occlusion. JACC Cardiovasc Interv. 2015;8(12):1540–8. Scholar
  18. 18.
    Karatasakis A, Danek BA, Karmpaliotis D, Alaswad K, Jaffer FA, Yeh RW, et al. Impact of proximal cap ambiguity on outcomes of chronic total occlusion percutaneous coronary intervention: insights from a multicenter US registry. J Invasive Cardiol. 2016;28(10):391–6.Google Scholar
  19. 19.
    • Harding SA, Wu EB, Lo S, Lim ST, Ge L, Chen JY, et al. A New Algorithm for Crossing Chronic Total Occlusions From the Asia Pacific Chronic Total Occlusion Club. JACC Cardiovasc Interv. 2017;10(21):2135–43. Description of the Asia Pacific algorithm for CTO PCI crossing that advocates use of IVUS in cases with ambiguous proximal cap. CrossRefPubMedGoogle Scholar
  20. 20.
    Galassi AR, Sumitsuji S, Boukhris M, Brilakis ES, Di Mario C, Garbo R, et al. Utility of intravascular ultrasound in percutaneous revascularization of chronic total occlusions: an overview. JACC Cardiovasc Interv. 2016;9(19):1979–91. Scholar
  21. 21.
    Dautov R, Abdul Jawad Altisent O, Rinfret S. Stumpless chronic total occlusion with no retrograde option: multidetector computed tomography-guided intervention via bi-radial approach utilizing bioresorbable vascular scaffold. Catheter Cardiovasc Interv. 2015;86(6):E258–62. Scholar
  22. 22.
    Ryan N, Gonzalo N, Dingli P, Cruz OV, Jimenez-Quevedo P, Nombela-Franco L, et al. Intravascular ultrasound guidance of percutaneous coronary intervention in ostial chronic total occlusions: a description of the technique and procedural results. Int J Cardiovas Imaging. 2017;33(6):807–13. Scholar
  23. 23.
    Nakashima M, Ikari Y, Aoki J, Tanabe K, Tanimoto S, Hara K. Intravascular ultrasound-guided chronic total occlusion wiring technique using 6 Fr catheters via bilateral transradial approach. Cardiovasc Interv Ther. 2015;30(1):68–71. Scholar
  24. 24.
    Lee UJ, Kim HS, Lee C, Kim KY, Kim W. Thrombotic occlusion during intravascular ultrasonography-guided percutaneous coronary intervention of stumpless chronic total occlusion. Chonnam Med J. 2014;50(3):112–4. Scholar
  25. 25.
    Brilakis ES. Manual of chronic total occlusion interventions a step-by-step approach. Second ed. London: Elsevier/Academic Press; 2018.CrossRefGoogle Scholar
  26. 26.
    Dash D, Li L. Intravascular ultrasound guided percutaneous coronary intervention for chronic total occlusion. Curr Cardiol Rev. 2015;11:323–327CrossRefGoogle Scholar
  27. 27.
    Lim MC. Antegrade techniques for chronic total occlusions. Curr Cardiol Rev. 2015;11:285–90.CrossRefGoogle Scholar
  28. 28.
    Chou RH, Lai CH, Lu TM. Side-branch and coaxial intravascular ultrasound guided wire re-entry after failed retrograde approach of chronic total occlusion intervention. Acta Cardiol Sin. 2016;32(3):363–6.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang WC, Teng HI, Hsueh CH, Lin SJ, Chan WL, Lu TM. Intravascular ultrasound guided wiring re-entry technique for complex chronic total occlusions. J Interv Cardiol. 2018;31:572–9. Scholar
  30. 30.
    Christopoulos G, Wyman RM, Alaswad K, Karmpaliotis D, Lombardi W, Grantham JA, et al. Clinical utility of the Japan-chronic total occlusion score in coronary chronic total occlusion interventions: results from a multicenter registry. Circ Cardiovasc Interv. 2015;8(7):e002171.
  31. 31.
    Matsuno S, Tsuchikane E, Harding SA, Wu EB, Kao HL, Brilakis ES, et al. Overview and proposed terminology for the reverse controlled antegrade and retrograde tracking (reverse CART) techniques. EuroIntervention. 2018;14(1):94–101. Scholar
  32. 32.
    • Dai J, Katoh O, Kyo E, Tsuji T, Watanabe S, Ohya H. Approach for chronic total occlusion with intravascular ultrasound-guided reverse controlled antegrade and retrograde tracking technique: single center experience. J Interv Cardiol. 2013;26(5):434–43. This paper showed that IVUS-guided reverse CART can be an effective strategy in patients with previoulsy failed antegrade or/and retrograde approach. CrossRefPubMedGoogle Scholar
  33. 33.
    Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. J Am Coll Cardiol Img. 2013;6(10):1095–104. Scholar
  34. 34.
    Madder RD. Optical coherence tomography: the next ACE in CTO interventions? Cardiovasc Revasc Med. 2016;17(7):429–30. Scholar
  35. 35.
    Jaguszewski M, Guagliumi G, Landmesser U. Optical frequency domain imaging for guidance of optimal stenting in the setting of recanalization of chronic total occlusion. J Invasive Cardiol. 2013;25(7):367–8.PubMedGoogle Scholar
  36. 36.
    Galassi R, Burini A, Ricci S, Pellei M, Rigobello MP, Citta A, et al. Synthesis and characterization of azolate gold(I) phosphane complexes as thioredoxin reductase inhibiting antitumor agents. Dalton Trans. 2012;41(17):5307–18. Scholar
  37. 37.
    Teijeiro Mestre R, Alegria-Barrero E, Di Mario C. Microchannels in recent chronic total occlusions assessed with frequency-domain optical coherence tomography. Rev Esp Cardiol (English ed). 2013;66(11):907. Scholar
  38. 38.
    • Heeger CH, Busjahn A, Hildebrand L, Fenski M, Lesche F, Meincke F, et al. Delayed coverage of drug-eluting stents after interventional revascularisation of chronic total occlusions assessed by optical coherence tomography: the ALSTER-OCT-CTO registry. EuroIntervention. 2016;11(9):1004–12. This OCT study demonstrated significantly delayed DES coverage after CTO PCI vs PCI of non-CTO lesions. CrossRefPubMedGoogle Scholar
  39. 39.
    Jia H, Hu S, Liu H, Zhu Y, Zhe CY, Li L, et al. Chronic total occlusion is associated with a higher incidence of malapposition and uncovered stent struts: OCT findings at 6 months following DES implantation. Catheter Cardiovasc Interv. 2017;89(S1):582–91. Scholar
  40. 40.
    Sherbet DP, Christopoulos G, Karatasakis A, Danek BA, Kotsia A, Navara R, et al. Optical coherence tomography findings after chronic total occlusion interventions: insights from the “angiographic evaluation of the everolimus-eluting stent in chronic total occlusions” (ACE-CTO) study (NCT01012869). Cardiovasc Revasc Med. 2016;17(7):444–9. Scholar
  41. 41.
    Vaquerizo B, Barros A, Pujadas S, Bajo E, Estrada D, Miranda-Guardiola F, et al. Bioresorbable everolimus-eluting vascular scaffold for the treatment of chronic total occlusions: CTO-ABSORB pilot study. EuroIntervention. 2015;11(5):555–63. Scholar
  42. 42.
    Lesiak M, Lanocha M, Araszkiewicz A, Siniawski A, Grygier M, Pyda M, et al. Percutaneous coronary intervention for chronic total occlusion of the coronary artery with the implantation of bioresorbable everolimus-eluting scaffolds. Poznan CTO-Absorb Pilot Registry. EuroIntervention. 2016;12(2):e144–51. Scholar
  43. 43.
    Mitomo S, Naganuma T, Fujino Y, Kawamoto H, Basavarajaiah S, Pitt M, et al. Bioresorbable vascular scaffolds for the treatment of chronic total occlusions: an international multicenter registry. Circ Cardiovasc Interv. 2017;10(1).
  44. 44.
    Fam JM, Ojeda S, Garbo R, Latib A, La Manna A, Vaquerizo B, et al. Everolimus-eluting bioresorbable vascular scaffolds for treatment of complex chronic total occlusions. EuroIntervention. 2017;13(3):355–63. Scholar
  45. 45.
    Ozel E, Tastan A, Ozturk A, Ozcan EE, Kilicaslan B, Ozdogan O. Procedural and one-year clinical outcomes of bioresorbable vascular scaffolds for the treatment of chronic total occlusions: a single-centre experience. Cardiovasc J Afr. 2016;27(6):345–9. Scholar
  46. 46.
    Vaquerizo B, Barros A, Pujadas S, Bajo E, Jimenez M, Gomez-Lara J, et al. One-year results of bioresorbable vascular scaffolds for coronary chronic total occlusions. Am J Cardiol. 2016;117(6):906–17. Scholar
  47. 47.
    Biscaglia S, Secco GG, Tumscitz C, Di Mario C, Campo G. Optical coherence tomography evaluation of overlapping everolimus-eluting bioresorbable vascular scaffold implantation guided by enhanced stent visualization system. Int J Cardiol. 2015;182:1–3. Scholar
  48. 48.
    Li H, Rha SW, Choi CU, Oh DJ. Optical coherence tomography and stent boost imaging guided bioresorbable vascular scaffold overlapping for coronary chronic total occlusion lesion. Yonsei Med J. 2017;58(5):1071–4. Scholar
  49. 49.
    La Manna A, Micciche E, D'Agosta G, Tensol Rodrigues Pereira G, Attizzani GF, Capranzano P, et al. Vascular response and healing profile of everolimus-eluting bioresorbable vascular scaffolds for percutaneous treatment of chronic total coronary occlusions: a one-year optical coherence tomography analysis from the GHOST-CTO registry. Int J Cardiol. 2018;253:45–9. Scholar
  50. 50.
    Okamura A, Yamane M, Muto M, Matsubara T, Igarashi Y, Nakamura S, et al. Complications during retrograde approach for chronic coronary total occlusion: sub-analysis of Japanese multicenter registry. Catheter Cardiovasc Interv. 2016;88(1):7–14. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Iosif Xenogiannis
    • 1
  • Peter Tajti
    • 1
    • 2
  • Dimitri Karmpaliotis
    • 3
  • Roberto Garbo
    • 4
  • Andrea Gagnor
    • 5
  • M. Nicholas Burke
    • 1
  • Emmanouil S. Brilakis
    • 1
    Email author
  1. 1.Abbott Northwestern HospitalMinneapolis Heart InstituteMinneapolisUSA
  2. 2.Division of Invasive Cardiology, Second Department of Internal Medicine and Cardiology CenterUniversity of SzegedSzegedHungary
  3. 3.Department of Invasive CardiologyColumbia UniversityNew YorkUSA
  4. 4.Department of Invasive CardiologySan Giovanni Bosco HospitalTurinItaly
  5. 5.Department of Invasive CardiologyMaria Vittoria HospitalTurinItaly

Personalised recommendations