Advertisement

Integrated Cardiac and Lung Ultrasound (ICLUS) in the Cardiac Intensive Care Unit

  • Govind Pandompatam
  • Daniel A. Sweeney
  • Jose L. Diaz-Gomez
  • Brandon M. Wiley
Echocardiography (S Costa and F Asch, Section Editors)
  • 23 Downloads
Part of the following topical collections:
  1. Topical Collection on Echocardiography

Abstract

Purpose of Review

This review highlights the use of basic lung ultrasound and introduces the concept of integrated cardiac and lung ultrasound (ICLUS) in the care of patients in the cardiac intensive care unit (ICU).

Recent Findings

Cardiac ultrasound is a fundamental imaging modality that is the gold standard for the diagnosis of cardiac pathology at the bedside. However, the demographics of the modern cardiac ICU are evolving to encompass patients with complex multi-organ system dysfunction in addition to acute cardiovascular disease. Therefore, a more comprehensive diagnostic approach is needed to allow the cardiologist to unravel the potential interplay of multiple pathologic processes. Literature on lung ultrasound has expanded dramatically in recent years as it has proven to be a feasible and accurate exam that provides rapid diagnosis of pulmonary pathology including pneumothorax, pleural effusion, pneumonia, and pulmonary edema. Furthermore, combined cardiac and lung sonography exposes the interaction of circulatory and pulmonary physiology that is central to the diagnosis and management of acute cardiovascular disease. ICLUS provides valuable information for the diagnosis and management of conditions such as respiratory failure, shock, and heart failure.

Summary

Numerous studies in recent years have illustrated the utility of lung ultrasound in various clinical settings. Integration of lung and cardiac ultrasound provides the cardiologist with a more holistic examination of the medically complex patients that are admitted to the modern cardiac ICU.

Keywords

Lung, echocardiography Ultrasound Intensive care unit Point-of-care-ultrasound Critical care 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

12410_2018_9463_MOESM1_ESM.mp4 (8.1 mb)
ESM 1 Normal Respirophasic Motion of the Pleural Line—“Lung-Sliding” (MP4 8300 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Spencer KT, Kimura BJ, Korcarz CE, Pellikka PA, Rahko PS, Siegel RJ. Focused cardiac ultrasound: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(6):567–81.CrossRefPubMedGoogle Scholar
  2. 2.
    • Sekiguchi H, Schenck LA, Horie R, Suzuki J, Lee EH, McMenomy BP, et al. Critical care ultrasonography differentiates ARDS, pulmonary edema, and other causes in the early course of acute hypoxemic respiratory failure. Chest. 2015;148(4):912–8. Key study demonstrating a simplified prediction model using focused ICLUS to differentiate ARDS and cardiogenic pulmonary edema from other etiologies of acute hypoxic respiratoy failure in the ICU. CrossRefPubMedGoogle Scholar
  3. 3.
    Ohman J, Harjola VP, Karjalainen P, Lassus J. Focused echocardiography and lung ultrasound protocol for guiding treatment in acute heart failure. ESC Heart Fail. 2018;5(1):120–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Soldati G, Testa A, Sher S, Pignataro G, La Sala M, Silveri NG. Occult traumatic pneumothorax: diagnostic accuracy of lung ultrasonography in the emergency department. Chest. 2008;133(1):204–11.CrossRefPubMedGoogle Scholar
  5. 5.
    • Lichtenstein DA. Ultrasound in the management of thoracic disease. Crit Care Med. 2007;35(5 Suppl):S250–61. Excellent review of lung ultrasound in the ICU. CrossRefPubMedGoogle Scholar
  6. 6.
    • Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91. Evidence-based and expert consensus recommendations for the use of point-of-care lung ultrasound. CrossRefPubMedGoogle Scholar
  7. 7.
    Miller A. Practical approach to lung ultrasound. BJA Education. 2016;16(2):39–45.CrossRefGoogle Scholar
  8. 8.
    Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–63.CrossRefPubMedGoogle Scholar
  9. 9.
    • Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37(27):2097–104. Key review of lung ultrasound for the evaluation of extravascular lung water and its application in the management and prognosis of heart failure patients. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Baldi G, Gargani L, Abramo A, D’Errico L, Caramella D, Picano E, et al. Lung water assessment by lung ultrasonography in intensive care: a pilot study. Intensive Care Med. 2013;39(1):74–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;127(5):1690–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Enghard P, Rademacher S, Nee J, Hasper D, Engert U, Jörres A, et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care. 2015;19:36.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Volpicelli G, Skurzak S, Boero E, Carpinteri G, Tengattini M, Stefanone V, et al. Lung ultrasound predicts well extravascular lung water but is of limited usefulness in the prediction of wedge pressure. Anesthesiology. 2014;121(2):320–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Gargani L, Frassi F, Soldati G, Tesorio P, Gheorghiade M, Picano E. Ultrasound lung comets for the differential diagnosis of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart Fail. 2008;10(1):70–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Alrajhi K, Woo MY, Vaillancourt C. Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis. Chest. 2012;141(3):703–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Amir R, Knio ZO, Mahmood F, Oren-Grinberg A, Leibowitz A, Bose R, et al. Ultrasound as a screening tool for central venous catheter positioning and exclusion of pneumothorax. Crit Care Med. 2017;45(7):1192–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15.CrossRefPubMedGoogle Scholar
  19. 19.
    Rocco M, Carbone I, Morelli A, et al. Diagnostic accuracy of bedside ultrasonography in the ICU: feasibility of detecting pulmonary effusion and lung contusion in patients on respiratory support after severe blunt thoracic trauma. Acta Anaesthesiol Scand. 2008;52(6):776–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Winkler MH, Touw HR, van de Ven PM, Twisk J, Tuinman PR. Diagnostic accuracy of chest radiograph, and when concomitantly studied lung ultrasound, in critically ill patients with respiratory symptoms: a systematic review and meta-analysis. Crit Care Med. 2018;46:e707–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Tu CY, Hsu WH, Hsia TC, Chen HJ, Tsai KD, Hung CW, et al. Pleural effusions in febrile medical ICU patients: chest ultrasound study. Chest. 2004;126(4):1274–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Gordon CE, Feller-Kopman D, Balk EM, Smetana GW. Pneumothorax following thoracentesis: a systematic review and meta-analysis. Arch Intern Med. 2010;170(4):332–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Dancel R, Schnobrich D, Puri N, Franco-Sadud R, Cho J, Grikis L, et al. Recommendations on the use of ultrasound guidance for adult thoracentesis: a position statement of the Society of Hospital Medicine. J Hosp Med. 2018;13(2):126–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;6:16.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D. Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med Off J Soc Acad Emerg Med. 2014;21(8):843–52.CrossRefGoogle Scholar
  26. 26.
    • Pivetta E, Goffi A, Lupia E, Tizzani M, Porrino G, Ferreri E, et al. Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: a SIMEU multicenter study. Chest. 2015;148(1):202–10. Multicenter trial that demonstrated the accuracy of lung ultrasound for identifying acute decompensated heart failure as the cause of acute dyspnea in the emergeny room. CrossRefPubMedGoogle Scholar
  27. 27.
    • Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–25. Stepwise diagnostic algorithm using lung ultrasound for patients in acute respiratory distress to differentiate pneumonia, pulmonary embolism, pulmonary edema, obstructive lung disease, and pneumothorax. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blanco PA, Cianciulli TF. Pulmonary edema assessed by ultrasound: impact in cardiology and intensive care practice. Echocardiography (Mount Kisco, NY). 2016;33(5):778–87.CrossRefGoogle Scholar
  29. 29.
    Platz E, Lattanzi A, Agbo C, Takeuchi M, Resnic FS, Solomon SD, et al. Utility of lung ultrasound in predicting pulmonary and cardiac pressures. Eur J Heart Fail. 2012;14(11):1276–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Lichtenstein DA, Meziere GA, Lagoueyte JF, Biderman P, Goldstein I, Gepner A. A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest. 2009;136(4):1014–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Frassi F, Gargani L, Gligorova S, Ciampi Q, Mottola G, Picano E. Clinical and echocardiographic determinants of ultrasound lung comets. Eur J Echocardiogr. 2007;8(6):474–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Agricola E, Picano E, Oppizzi M, Pisani M, Meris A, Fragasso G, et al. Assessment of stress-induced pulmonary interstitial edema by chest ultrasound during exercise echocardiography and its correlation with left ventricular function. J Am Soc Echocardiogr. 2006;19(4):457–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Llamas-Alvarez AM, Tenza-Lozano EM, Latour-Perez J. Accuracy of lung ultrasonography in the diagnosis of pneumonia in adults: systematic review and meta-analysis. Chest. 2017;151(2):374–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Weil MH, Shubin H. Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol. 1971;23(0):13–23.PubMedGoogle Scholar
  35. 35.
    • Perera P, Mailhot T, Riley D, Mandavia D. The RUSH exam: rapid ultrasound in SHock in the evaluation of the critically ill. Emerg Med Clin North Am. 2010;28(1):29–56. vii. Example of a comprehensive bedside ILCUS algorithm for the differentiation of shock. CrossRefPubMedGoogle Scholar
  36. 36.
    Atkinson PR, McAuley DJ, Kendall RJ, et al. Abdominal and cardiac evaluation with sonography in shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension. Emerg Med J. 2009;26(2):87–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Volpicelli G, Lamorte A, Tullio M, Cardinale L, Giraudo M, Stefanone V, et al. Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensive Care Med. 2013;39(7):1290–8.CrossRefPubMedGoogle Scholar
  38. 38.
    • Lichtenstein D, Karakitsos D. Integrating lung ultrasound in the hemodynamic evaluation of acute circulatory failure (the fluid administration limited by lung sonography protocol). J Crit Care. 2012;27(5):533.e511–39. Protocol for use of lung ultrasound in the diagnosis of shock and for guidance of fluid resuscitation. CrossRefGoogle Scholar
  39. 39.
    Diaz-Gomez JL, Via G, Ramakrishna H. Focused cardiac and lung ultrasonography: implications and applicability in the perioperative period. Rom J Anaesth Intensive Care. 2016;23(1):41–54.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lichtenstein D. FALLS-protocol: lung ultrasound in hemodynamic assessment of shock. Heart Lung Vessels. 2013;5(3):142–7.PubMedGoogle Scholar
  41. 41.
    Bernardi E, Camporese G, Buller HR, et al. Serial 2-point ultrasonography plus D-dimer vs whole-leg color-coded Doppler ultrasonography for diagnosing suspected symptomatic deep vein thrombosis: a randomized controlled trial. JAMA. 2008;300(14):1653–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Burnside PR, Brown MD, Kline JA. Systematic review of emergency physician-performed ultrasonography for lower-extremity deep vein thrombosis. Acad Emerg Med Off J Soc Acad Emerg Med. 2008;15(6):493–8.CrossRefGoogle Scholar
  43. 43.
    Ghane MR, Gharib M, Ebrahimi A, et al. Accuracy of early rapid ultrasound in shock (RUSH) examination performed by emergency physician for diagnosis of shock etiology in critically ill patients. J Emerg Trauma Shock. 2015;8(1):5–10.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jones AE, Tayal VS, Sullivan DM, Kline JA. Randomized, controlled trial of immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit Care Med. 2004;32(8):1703–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Shokoohi H, Boniface KS, Pourmand A, Liu YT, Davison DL, Hawkins KD, et al. Bedside ultrasound reduces diagnostic uncertainty and guides resuscitation in patients with undifferentiated hypotension. Crit Care Med. 2015;43(12):2562–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357–79.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298–309.CrossRefPubMedGoogle Scholar
  48. 48.
    Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Corl KA, George NR, Romanoff J, Levinson AT, Chheng DB, Merchant RC, et al. Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients. J Crit Care. 2017;41:130–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Miller A, Mandeville J. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract. 2016;3(2):G1–g12.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    • Picano E, Scali MC. The lung water cascade in heart failure. Echocardiography. 2017;34(10):1503–7. Review that describes the “lung water cascade” in heart failure. The authors focus on the use of lung ultrasound as a modality with important diagnostic, monitoring, and prognostic value. CrossRefPubMedGoogle Scholar
  53. 53.
    Miglioranza MH, Picano E, Badano LP, Sant’Anna R, Rover M, Zaffaroni F, et al. Pulmonary congestion evaluated by lung ultrasound predicts decompensation in heart failure outpatients. Int J Cardiol. 2017;240:271–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Dwyer KH, Merz AA, Lewis EF, Claggett BL, Crousillat DR, Lau ES, et al. Pulmonary congestion by lung ultrasound in ambulatory patients with heart failure with reduced or preserved ejection fraction and hypertension. J Card Fail. 2018;24:219–26.CrossRefPubMedGoogle Scholar
  55. 55.
    Platz E, Lewis EF, Uno H, Peck J, Pivetta E, Merz AA, et al. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients. Eur Heart J. 2016;37(15):1244–51.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gustafsson M, Alehagen U, Johansson P. Pocket-sized ultrasound examination of fluid imbalance in patients with heart failure: a pilot and feasibility study of heart failure nurses without prior experience of ultrasonography. Eur J Cardiovasc Nurs. 2015;14(4):294–302.CrossRefPubMedGoogle Scholar
  57. 57.
    Volpicelli G, Caramello V, Cardinale L, Mussa A, Bar F, Frascisco MF. Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure. Am J Emerg Med. 2008;26(5):585–91.CrossRefPubMedGoogle Scholar
  58. 58.
    Liteplo AS, Murray AF, Kimberly HH, Noble VE. Real-time resolution of sonographic B-lines in a patient with pulmonary edema on continuous positive airway pressure. Am J Emerg Med. 2010;28(4):541.e545–8.CrossRefGoogle Scholar
  59. 59.
    Noble VE, Murray AF, Capp R, Sylvia-Reardon MH, Steele DJR, Liteplo A. Ultrasound assessment for extravascular lung water in patients undergoing hemodialysis. Time course for resolution. Chest. 2009;135(6):1433–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Mallamaci F, Benedetto FA, Tripepi R, Rastelli S, Castellino P, Tripepi G, et al. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging. 2010;3(6):586–94.CrossRefPubMedGoogle Scholar
  61. 61.
    Ohman J, Harjola VP, Karjalainen P, Lassus J. Assessment of early treatment response by rapid cardiothoracic ultrasound in acute heart failure: cardiac filling pressures, pulmonary congestion and mortality. Eur Heart J Acute Cardiovasc Care. 2017;  https://doi.org/10.1177/2048872617708974.
  62. 62.
    Gargani L, Pang PS, Frassi F, Miglioranza MH, Dini FL, Landi P, et al. Persistent pulmonary congestion before discharge predicts rehospitalization in heart failure: a lung ultrasound study. Cardiovasc Ultrasound. 2015;13:40.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bedetti G, Gargani L, Sicari R, Gianfaldoni ML, Molinaro S, Picano E. Comparison of prognostic value of echographic [corrected] risk score with the thrombolysis in myocardial infarction (TIMI) and global registry in acute coronary events (GRACE) risk scores in acute coronary syndrome. Am J Cardiol. 2010;106(12):1709–16.CrossRefPubMedGoogle Scholar
  64. 64.
    Siriopol D, Hogas S, Voroneanu L, Onofriescu M, Apetrii M, Oleniuc M, et al. Predicting mortality in haemodialysis patients: a comparison between lung ultrasonography, bioimpedance data and echocardiography parameters. Nephrol Dial Transplant. 2013;28(11):2851–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Coiro S, Rossignol P, Ambrosio G, Carluccio E, Alunni G, Murrone A, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17(11):1172–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Holland EM, Moss TJ. Acute noncardiovascular illness in the cardiac intensive care unit. J Am Coll Cardiol. 2017;69(16):1999–2007.CrossRefPubMedGoogle Scholar
  67. 67.
    Katz JN, Shah BR, Volz EM, Horton JR, Shaw LK, Newby LK, et al. Evolution of the coronary care unit: clinical characteristics and temporal trends in healthcare delivery and outcomes. Crit Care Med. 2010;38(2):375–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Govind Pandompatam
    • 1
  • Daniel A. Sweeney
    • 2
  • Jose L. Diaz-Gomez
    • 3
  • Brandon M. Wiley
    • 4
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineMayo ClinicRochesterUSA
  2. 2.Division of Pulmonary, Critical Care, and Sleep Medicine, Department of MedicineUniversity of CaliforniaSan DiegoUSA
  3. 3.Departments of Anesthesiology, Critical Care and NeurosurgeryMayo ClinicJacksonvilleUSA
  4. 4.Department of Cardiovascular MedicineMayo ClinicRochesterUSA

Personalised recommendations