Strain Evaluation in TAVR—Current Evidence, Knowledge Gaps, and Future Directions

  • Miho Fukui
  • João L. CavalcanteEmail author
Echocardiography (F Asch and S Costa, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Echocardiography


Purpose of Review

Transcatheter aortic valve replacement (TAVR) has been a paradigm shift for the treatment of patients with severe aortic stenosis (AS). Subclinical cardiac changes in myocardial deformation, not reflected by left ventricular ejection fraction (LVEF), are often present and can be measured by strain imaging. This manuscript will review the current literature and discuss the importance of strain evaluation in TAVR patients.

Recent Findings

Strain measurement, especially global longitudinal strain (GLS), has been shown to be associated with outcomes in patients with AS. In addition, GLS assessment prior to and after TAVR appears to correlate with LV functional recovery, symptoms, and the prognosis in these patients; however, evidence is limited to small studies.


With a better understanding of strain evaluation in TAVR patients, this important imaging modality could emerge as a powerful bedside tool to aid in determining the timing of intervention and further improving outcomes.


Aortic stenosis (AS) Aortic valve replacement (AVR) Global longitudinal strain (GLS) Speckle tracking echocardiography (STE) Subclinical cardiac damage Transcatheter aortic valve replacement (TAVR) 


Compliance with Ethical Standards

Conflict of Interest

JLC has investigator invited Research Grant and Consulting (Medtronic Inc). There are no other conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Chambers JB. Aortic stenosis. Eur J Echocardiogr. 2009;10(1):i11–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.CrossRefPubMedGoogle Scholar
  3. 3.
    Rajappan K, Rimoldi OE, Dutka DP, Ariff B, Pennell DJ, Sheridan DJ, et al. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105(4):470–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Cavalcante JL. Watchful waiting in aortic stenosis: are we ready for individualizing the risk assessment? Eur Heart J. 2016;37(8):724–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Dahl JS, Barros-Gomes S, Videbaek L, Poulsen MK, Issa IF, Carter-Storch R, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in aortic stenosis. JACC Cardiovasc Imaging. 2016;9(5):519–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Chang S-A, Park P-W, Sung K, Lee S-C, Park SW, Lee YT, et al. Noninvasive estimate of left ventricular filling pressure correlated with early and midterm postoperative cardiovascular events after isolated aortic valve replacement in patients with severe aortic stenosis. J Thorac Cardiovasc Surg. 2010;140(6):1361–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Dahl JS, Videbæk L, Poulsen MK, Pellikka PA, Veien K, Andersen LI, et al. Noninvasive assessment of filling pressure and left atrial pressure overload in severe aortic valve stenosis: relation to ventricular remodeling and clinical outcome after aortic valve replacement. J Thorac Cardiovasc Surg. 2011;142(3):e77–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Weidemann F, Herrmann S, Stork S, Niemann M, Frantz S, Lange V, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation. 2009;120(7):577–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP III, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):e521–643.CrossRefPubMedGoogle Scholar
  11. 11.
    Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.CrossRefGoogle Scholar
  12. 12.
    Clavel MA, Webb JG, Rodes-Cabau J, Masson JB, Dumont E, De Larochelliere R, et al. Comparison between transcatheter and surgical prosthetic valve implantation in patients with severe aortic stenosis and reduced left ventricular ejection fraction. Circulation. 2010;122(19):1928–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Ribeiro HB, Lerakis S, Gilard M, Cavalcante JL, Makkar R, Herrmann HC, et al. Transcatheter aortic valve replacement in patients with low-flow, low-gradient aortic stenosis. TOPAS-TAVI Registry. 2018;71(12):1297–308.Google Scholar
  14. 14.
    • Ng AC, Delgado V, Bertini M, Antoni ML, van Bommel RJ, van Rijnsoever EP, et al. Alterations in multidirectional myocardial functions in patients with aortic stenosis and preserved ejection fraction: a two-dimensional speckle tracking analysis. Eur Heart J. 2011;32(12):1542–50. The author of this study showed that subclinical cardiac changes might be present in patients with severe AS despite normal LVEF. CrossRefPubMedGoogle Scholar
  15. 15.
    Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zaca V, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30(1):71–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47(4):789–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313.CrossRefPubMedGoogle Scholar
  18. 18.
    Biswas M, Sudhakar S, Nanda NC, Buckberg G, Pradhan M, Roomi AU, et al. Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography (Mount Kisco, NY). 2013;30(1):88–105.CrossRefGoogle Scholar
  19. 19.
    Ternacle J, Bodez D, Guellich A, Audureau E, Rappeneau S, Lim P, et al. Causes and consequences of longitudinal LV dysfunction assessed by 2D strain echocardiography in cardiac amyloidosis. J Am Coll Cardiol Img. 2016;9(2):126–38.CrossRefGoogle Scholar
  20. 20.
    • Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):260–74. This review appraised the evidence for GLS as a complementary metric to LVEF for incorporation into mainstream clinical practice. CrossRefPubMedGoogle Scholar
  21. 21.
    Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71(18):1947–57.CrossRefPubMedGoogle Scholar
  22. 22.
    Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging. 2009;2(5):356–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. J Am Coll Cardiol Img. 2015;8(12):1351–9.CrossRefGoogle Scholar
  24. 24.
    Kearney LG, Lu K, Ord M, Patel SK, Profitis K, Matalanis G, et al. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging. 2012;13(10):827–33.CrossRefPubMedGoogle Scholar
  25. 25.
    • Ng ACT, Prihadi EA, Antoni ML, Bertini M, Ewe SH, Ajmone Marsan N, Leung DY, Delgado V, Bax JJ Left ventricular global longitudinal strain is predictive of all-cause mortality independent of aortic stenosis severity and ejection fraction. Eur Heart J Cardiovasc Imaging 2017. This article showed GLS is independently associated with all-cause morality in 688 AS patients.
  26. 26.
    Alashi A, Mentias A, Abdallah A, Feng K, Gillinov AM, Rodriguez LL, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction. JACC Cardiovasc Imaging 2018;11(5):673–682.Google Scholar
  27. 27.
    Mentias A, Naji P, Gillinov AM, Rodriguez LL, Reed G, Mihaljevic T, et al. Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction. J Am Coll Cardiol. 2016;68(18):1974–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61(23):2365–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. J Am Coll Cardiol Img. 2013;6(8):841–50.CrossRefGoogle Scholar
  30. 30.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19(1):9–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Cameli M, Mondillo S, Righini FM, Lisi M, Dokollari A, Lindqvist P, et al. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J Card Fail. 2016;22(11):901–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, et al. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2016;17(6):613–21.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    • Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69(8):1043–56. This review article appraised STE in a clinical context by providing a critical evaluation of the prognostic and diagnostic insights. Google Scholar
  35. 35.
    • Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8(4):489–92. The author of this paper provides essential information about steps of strain measurements. CrossRefPubMedGoogle Scholar
  36. 36.
    Negishi T, Negishi K, Thavendiranathan P, Cho G-Y, Popescu BA, Vinereanu D, et al. Effect of experience and training on the concordance and precision of strain measurements. J Am Coll Cardiol Img. 2017;10(5):518–22.CrossRefGoogle Scholar
  37. 37.
    Becker M, Bilke E, Kuhl H, Katoh M, Kramann R, Franke A, et al. Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart. 2006;92(8):1102–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Negishi K, Lucas S, Negishi T, Hamilton J, Marwick TH. What is the primary source of discordance in strain measurement between vendors: imaging or analysis? Ultrasound Med Biol. 2013;39(4):714–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, et al. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. J Am Soc Echocardiogr. 2012;25(11):1195–203.CrossRefPubMedGoogle Scholar
  40. 40.
    Yang H, Marwick TH, Fukuda N, Oe H, Saito M, Thomas JD, et al. Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr. 2015;28(6):642–8.e7.CrossRefPubMedGoogle Scholar
  41. 41.
    Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr. 2015;28(10):1171–81.e2.CrossRefPubMedGoogle Scholar
  42. 42.
    Hyodo E, Arai K, Koczo A, Shimada YJ, Fujimoto K, Di Tullio MR, et al. Alteration in subendocardial and subepicardial myocardial strain in patients with aortic valve stenosis: an early marker of left ventricular dysfunction? J Am Soc Echocardiogr. 2012;25(2):153–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J. 2009;30(24):3037–47.CrossRefPubMedGoogle Scholar
  44. 44.
    Lisi M, Henein MY, Cameli M, Ballo P, Reccia R, Bennati E, et al. Severity of aortic stenosis predicts early post-operative normalization of left atrial size and function detected by myocardial strain. Int J Cardiol. 2013;167(4):1450–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Staron A, Bansal M, Kalakoti P, Nakabo A, Gasior Z, Pysz P, et al. Speckle tracking echocardiography derived 2-dimensional myocardial strain predicts left ventricular function and mass regression in aortic stenosis patients undergoing aortic valve replacement. Int J Cardiovasc Imaging. 2013;29(4):797–808.CrossRefPubMedGoogle Scholar
  46. 46.
    Luszczak J, Olszowska M, Drapisz S, Plazak W, Karch I, Komar M, et al. Assessment of left ventricle function in patients with symptomatic and asymptomatic aortic stenosis by 2-dimensional speckle-tracking imaging. Med Sci Monit. 2012;18(12):MT91–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poulin F, Carasso S, Horlick EM, Rakowski H, Lim KD, Finn H, et al. Recovery of left ventricular mechanics after transcatheter aortic valve implantation: effects of baseline ventricular function and postprocedural aortic regurgitation. J Am Soc Echocardiogr. 2014;27(11):1133–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Kamperidis V, Joyce E, Debonnaire P, Katsanos S, van Rosendael PJ, van der Kley F, et al. Left ventricular functional recovery and remodeling in low-flow low-gradient severe aortic stenosis after transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2014;27(8):817–25.CrossRefPubMedGoogle Scholar
  49. 49.
    Spethmann S, Baldenhofer G, Dreger H, Stuer K, Sanad W, Saghabalyan D, et al. Recovery of left ventricular and left atrial mechanics in various entities of aortic stenosis 12 months after TAVI. Eur Heart J Cardiovasc Imaging. 2014;15(4):389–98.CrossRefPubMedGoogle Scholar
  50. 50.
    Dinh W, Nickl W, Smettan J, Kramer F, Krahn T, Scheffold T, et al. Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging. Cardiovasc Ultrasound. 2010;8:29.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Aronson D, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol. 2011;107(7):1052–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Miyazaki S, Daimon M, Miyazaki T, Onishi Y, Koiso Y, Nishizaki Y, et al. Global longitudinal strain in relation to the severity of aortic stenosis: a two-dimensional speckle-tracking study. Echocardiography (Mount Kisco, NY). 2011;28(7):703–8.CrossRefGoogle Scholar
  53. 53.
    Giannini C, Petronio AS, Talini E, De Carlo M, Guarracino F, Grazia M, et al. Early and late improvement of global and regional left ventricular function after transcatheter aortic valve implantation in patients with severe aortic stenosis: an echocardiographic study. Am J Cardiovasc Dis. 2011;1(3):264–73.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Schattke S, Baldenhofer G, Prauka I, Zhang K, Laule M, Stangl V, et al. Acute regional improvement of myocardial function after interventional transfemoral aortic valve replacement in aortic stenosis: a speckle tracking echocardiography study. Cardiovasc Ultrasound. 2012;10:15.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Delgado M, Ruiz M, Mesa D, de Lezo Cruz Conde JS, Pan M, Lopez J, et al. Early improvement of the regional and global ventricle function estimated by two-dimensional speckle tracking echocardiography after percutaneous aortic valve implantation speckle tracking after CoreValve implantation. Echocardiography (Mount Kisco, NY). 2013;30(1):37–44.CrossRefGoogle Scholar
  56. 56.
    Grabskaya E, Becker M, Altiok E, Dohmen G, Brehmer K, Hamada-Langer S, et al. Impact of transcutaneous aortic valve implantation on myocardial deformation. Echocardiography (Mount Kisco, NY). 2011;28(4):397–401.CrossRefGoogle Scholar
  57. 57.
    D'Ascenzi F, Cameli M, Iadanza A, Lisi M, Zaca V, Reccia R, et al. Improvement of left ventricular longitudinal systolic function after transcatheter aortic valve implantation: a speckle-tracking prospective study. Int J Cardiovasc Imaging. 2013;29(5):1007–15.CrossRefPubMedGoogle Scholar
  58. 58.
    Kempny A, Diller GP, Kaleschke G, Orwat S, Funke A, Radke R, et al. Longitudinal left ventricular 2D strain is superior to ejection fraction in predicting myocardial recovery and symptomatic improvement after aortic valve implantation. Int J Cardiol. 2013;167(5):2239–43.CrossRefPubMedGoogle Scholar
  59. 59.
    D'Andrea A, Padalino R, Cocchia R, Di Palma E, Riegler L, Scarafile R, et al. Effects of transcatheter aortic valve implantation on left ventricular and left atrial morphology and function. Echocardiography (Mount Kisco, NY). 2015;32(6):928–36.CrossRefGoogle Scholar
  60. 60.
    Vizzardi E, Sciatti E, Bonadei I, Rovetta R, D'Aloia A, Gelsomino S, et al. Effects of transcatheter aortic valve implantation on left ventricular mass and global longitudinal strain: tissue Doppler and strain evaluation. Heart, Lung Vessels. 2014;6(4):253–61.PubMedGoogle Scholar
  61. 61.
    Dimitriadis Z, Scholtz S, Ensminger S, Wiemer M, Fischbach T, Scholtz W, et al. Left ventricular adaptation after TAVI evaluated by conventional and speckle-tracking echocardiography. Int J Cardiol. 2017;228:633–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Logstrup BB, Andersen HR, Thuesen L, Christiansen EH, Terp K, Klaaborg KE, et al. Left ventricular global systolic longitudinal deformation and prognosis 1 year after femoral and apical transcatheter aortic valve implantation. J Am Soc Echocardiogr. 2013;26(3):246–54.CrossRefPubMedGoogle Scholar
  63. 63.
    Bauer F, Coutant V, Bernard M, Stepowski D, Tron C, Cribier A, et al. Patients with severe aortic stenosis and reduced ejection fraction: earlier recovery of left ventricular systolic function after transcatheter aortic valve implantation compared with surgical valve replacement. Echocardiography (Mount Kisco, NY). 2013;30(8):865–70.CrossRefGoogle Scholar
  64. 64.
    Rost C, Korder S, Wasmeier G, Wu M, Klinghammer L, Flachskampf FA, et al. Sequential changes in myocardial function after valve replacement for aortic stenosis by speckle tracking echocardiography. Eur J Echocardiogr. 2010;11(7):584–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Becker M, Kramann R, Dohmen G, Luckhoff A, Autschbach R, Kelm M, et al. Impact of left ventricular loading conditions on myocardial deformation parameters: analysis of early and late changes of myocardial deformation parameters after aortic valve replacement. J Am Soc Echocardiogr. 2007;20(6):681–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Yingchoncharoen T, Gibby C, Rodriguez LL, Grimm RA, Marwick TH. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imaging. 2012;5(6):719–25.CrossRefPubMedGoogle Scholar
  67. 67.
    Lee HF, Hsu LA, Chan YH, Wang CL, Chang CJ, Kuo CT. Prognostic value of global left ventricular strain for conservatively treated patients with symptomatic aortic stenosis. J Cardiol. 2013;62(5):301–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Kusunose K, Goodman A, Parikh R, Barr T, Agarwal S, Popovic ZB, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ Cardiovasc Imaging. 2014;7(6):938–45.CrossRefPubMedGoogle Scholar
  69. 69.
    Goldberg JB, DeSimone JP, Kramer RS, Discipio AW, Russo L, Dacey LJ, et al. Impact of preoperative left ventricular ejection fraction on long-term survival after aortic valve replacement for aortic stenosis. Circ Cardiovasc Qual Outcomes. 2013;6(1):35–41.CrossRefPubMedGoogle Scholar
  70. 70.
    Eleid MF, Goel K, Murad MH, Erwin PJ, Suri RM, Greason KL, et al. Meta-analysis of the prognostic impact of stroke volume, gradient, and ejection fraction after transcatheter aortic valve implantation. Am J Cardiol. 2015;116(6):989–94.CrossRefPubMedGoogle Scholar
  71. 71.
    Cavalcante JL, Rijal S, Althouse AD, Delgado-Montero A, Katz WE, Schindler JT, et al. Right ventricular function and prognosis in patients with low-flow, low-gradient severe aortic stenosis. J Am Soc Echocardiogr. 2016;29(4):325–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Klaeboe LG, Haland TF, Leren IS, Ter Bekke RMA, Brekke PH, Rosjo H, et al. Prognostic value of left ventricular deformation parameters in patients with severe aortic stenosis: a pilot study of the usefulness of strain echocardiography. J Am Soc Echocardiogr. 2017;30(8):727–35.e1.CrossRefPubMedGoogle Scholar
  73. 73.
    Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, et al. Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE strain standardization task force. J Am Coll Cardiol Img. 2018;11(1):15–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Structural Cardiovascular Imaging and Core LabHeart & Vascular Institute - UPMC University of PittsburghPittsburghUSA

Personalised recommendations