Current Cardiovascular Imaging Reports

, Volume 6, Issue 6, pp 507–516 | Cite as

New Aspects of Echocardiographic Assessment of Pulmonary Hypertension

  • Luna GarganiEmail author
  • Rosa Sicari
Echocardiography (T Buck, Section Editor)


In recent years, the assessment of pulmonary hypertension (PH) has gained more and more consideration in the clinical and scientific community, since many different conditions, including primary and secondary etiologies, may lead to PH. The possibility to noninvasively estimate pulmonary artery systolic pressure (PASP) by echocardiography is of recognized utility for the screening and follow-up of PH. Along with PH estimation, a thorough evaluation of the right heart morphology, function, and hemodynamics is of paramount importance in patients with PH. In the last few years, many different echocardiographic techniques were proposed to improve the classic 2D assessment of the right heart, which suffers from significant limitations. Together with the more established tissue Doppler imaging, myocardial strain and speckle tracking and 3D echocardiography have emerged as very promising ultrasound methods to improve the overall assessment of patients with PH.


Echocardiography Pulmonary hypertension Speckle-tracking Strain 3D-echo 


Compliance with Ethics Guidelines

Conflict of Interest

Luna Gargani declares that she has no conflicts of interest. Rosa Sicari declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material


(WMV 284 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.PubMedCrossRefGoogle Scholar
  2. 2.
    Bossone E, D'Andrea A, D'Alto M, Citro R, Argiento P, Ferrara F, et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr. 2013;26:1–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, et al. Right ventricle in pulmonary arterial hypertension: hemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11:27–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Jurcut R, Giusca S, La Gerche A, Vasile S, Ginghina C, Voigt JU. The echocardiographic assessment of the right ventricle: what to do in 2010? Eur J Echocardiogr. 2010;11:81–96.4.PubMedCrossRefGoogle Scholar
  5. 5.
    Leda Galiuto, Luigi Badano, Kevin Fox, Rosa Sicari, Jose Luis Zamorano. The EAE textbook of echocardiography. Oxford University Press, Oxford. 2011Google Scholar
  6. 6.
    Tolle JJ, Waxman AB, Van Horn TL, Pappagianopoulos PP, Systrom DM. Exercise-induced pulmonary arterial hypertension. Circulation. 2008;118:2183–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Oudiz RJ, Rubin LJ. Exercise-induced pulmonary arterial hypertension: a new addition to the spectrum of pulmonary vascular diseases. Circulation. 2008;118:2120–1.PubMedCrossRefGoogle Scholar
  8. 8.
    MacDougall JD, McKelvie RS, Moroz DE, Sale DG, McCartney N, Buick F. Factors affecting blood pressure during heavy weight lifting and static contractions. J Appl Physiol. 1992;73:1590–7.PubMedGoogle Scholar
  9. 9.
    Huez S, Roufosse F, Vachiéry JL, Pavelescu A, Derumeaux G, Wautrecht JC, et al. Isolated right ventricular dysfunction in systemic sclerosis: latent pulmonary hypertension? Eur Respir J. 2007;30:928–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Forfia PR, Vachiéry JL. Echocardiography in pulmonary arterial hypertension. Am J Cardiol. 2012;110(6 Suppl):16S–24S.PubMedCrossRefGoogle Scholar
  11. 11.
    •• Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. This is the first ASE/EAE document on the echocardiographic assessment of the right heart. It is extremely useful and didactic, and allows knowing the state-of-the-art evaluation of the right heart.PubMedCrossRefGoogle Scholar
  12. 12.
    Eysmann SB, Palevsky HI, Reichek N, Hackney K, Douglas PS. Two-dimensional and Doppler-echocardiographic and cardiac catheterization correlates of survival in primary pulmonary hypertension. Circulation. 1989;80:353–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Haddad F, Couture P, Tousignant C, et al. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg. 2009;108:407–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study, Echocardiography 2007;24: 452–6.Google Scholar
  18. 18.
    Nass N, McConnell MV, Goldhaber SZ, Chyu S, Solomon SD. Recovery of regional right ventricular function after thrombolysis for pulmonary embolism. Am J Cardiol. 1999;83:804–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Zornoff LA, Skali H, Pfeffer MA, St John SM, Rouleau JL, Lamas GA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39:1450–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO study). Am J Cardiol. 2008;101:607–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Gopal AS, Chukwu EO, Iwuchukwu CJ, Katz AS, Toole RS, Schapiro W, et al. Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2007;20:445–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Jenkins C, Chan J, Bricknell K, Strudwick M, Marwick TH. Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography: comparison with cardiac MRI. Chest. 2007;131:1844–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Tamborini G, Brusoni D, Torres Molina JE, Galli CA, Maltagliati A, Muratori M, et al. Feasibility of a new generation three-dimensional echocardiography for right ventricular volumetric and functional measurements. Am J Cardiol. 2008;102:499–505.PubMedCrossRefGoogle Scholar
  24. 24.
    Grapsa J, O’Regan DP, Pavlopoulos H, Durighel G, Dawson D, Nihoyannopoulos P. Right ventricular remodeling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur J Echocardiogr. 2010;11:64–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Ho CY, Solomon SD. A clinician’s guide to tissue Doppler imaging. Circulation. 2006;113:e396–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Meluzin J, Spinarova L, Bakala J, Toman J, Krejcí J, Hude P, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion: a new, rapid, and noninvasive method of evaluating right ventricular systolic function. Eur Heart J. 2001;22:340–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Mertens LL, Friedberg MK. Imaging the right ventricle—current state of the art. Nat Rev Cardiol. 2010;7:551–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Lytrivi ID, Lai WW, Ko HH, Nielsen JC, Parness IA, Srivastava S. Color Doppler tissue imaging for evaluation of right ventricular systolic function in patients with congenital heart disease. J Am Soc Echocardiogr. 2005;18:1099–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Citro R, Bossone E, Kuersten B, Gregorio G, Salustri A. Tissue Doppler and strain imaging: anything left in the echo-lab? Cardiovasc Ultrasound. 2008;6:54.PubMedCrossRefGoogle Scholar
  30. 30.
    Bleeker GB, Steendijk P, Holman ER, Yu C-M, Breithardt OA, Kaandorp TAM, et al. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006;92:i19–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography. 2006;23:750–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindqvist P, Waldenstroem A, Henein M, Moerner S, Kazzam E. Regional and global right ventricular function in healthy individuals aged 20–90 years: a pulsed Doppler tissue imaging study: Umeå General Population Heart Study. Echocardiography. 2005;22:305–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Kukulski T, Huebbert L, Arnold M, Wranne B, Hatle L, Sutherland GR. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J Am Soc Echocardiogr. 2000;13:194–204.PubMedGoogle Scholar
  34. 34.
    Yoshifuku S, Otsuji Y, Takasaki K, Yuge K, Kisanuki A, Toyonaga K, et al. Pseudonormalized Doppler total ejection isovolume (Tei) index in patients with right ventricular acute myocardial infarction. Am J Cardiol. 2003;91:527–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Sebbag I, Rudski LG, Therrien J, Hirsch A, Langleben D. Effect of chronic infusion of epoprostenol on echocardiographic right ventricular myocardial performance index and its relation to clinical outcome in patients with primary pulmonary hypertension. Am J Cardiol. 2001;88:1060–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Fukuda Y, Tanaka H, Sugiyama D, Ryo K, Onishi T, Fukuya H, et al. Utility of right ventricular free wall speckle-tracking strain for evaluation of right ventricular performance in patients with pulmonary hypertension. J Am Soc Echocardiogr. 2011;24:1101–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lopez-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. Differential strain and velocity generation along the right ventricular free wall in pulmonary hypertension. Can J Cardiol. 2009;25:e73–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Utsunomiya H, Nakatani S, Okada T, Kanzaki H, Kyotani S, Nakanishi N, et al. A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging. Int J Cardiol. 2011;147:88–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol. 2006;98:699–704.PubMedCrossRefGoogle Scholar
  40. 40.
    Borges AC, Knebel F, Eddicks S, Panda A, Schattke S, Witt C, et al. Right ventricular function assessed by 2-dimensional strain and tissue Doppler echocardiography in patients with pulmonary arterial hypertension and effect of vasodilator therapy. Am J Cardiol. 2006;98:530–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Puwanant S, Park M, Popovic ZB, Tang WH, Farha S, George D, et al. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation. 2010;121:259–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao JF, Maalouf JF, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139:1299–309.PubMedCrossRefGoogle Scholar
  43. 43.
    Haeck ML, Scherptong RW, Ajmone Marsan N, Holman ER, Schalij MJ, Bax JJ, et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:628–36.PubMedCrossRefGoogle Scholar
  44. 44.
    •• Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12:167–205. This is the ASE/EAE consensus statement on the echocardiographic assessment of cardiac mechanics. The paper provides a comprehensive dissertation on the recent echocardiographic techniques developed to assess cardiac mechanics.PubMedCrossRefGoogle Scholar
  45. 45.
    Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70:657–62.Google Scholar
  46. 46.
    Currie PJ, Seward JB, Chan KL, Fyfe DA, Hagler DJ, Mair DD, et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6:750–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Hinderliter AL, Willis PW, Barst RJ, Rich S, Rubin LJ, Badesch DB, et al. Effects of long-term in- fusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Circulation. 1997;95:1479–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Taleb M, Khuder S, Tinkel J, Khouri SJ. The diagnostic accuracy of Doppler echocardiography in assessment of pulmonary artery systolic pressure: a meta-analysis. Echocardiography. 2013;30:258–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:S55–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119:2663–70.PubMedCrossRefGoogle Scholar
  52. 52.
    McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation. 2001;104:2797–802.PubMedCrossRefGoogle Scholar
  53. 53.
    Mahan G, Dabestani A, Gardin J, Allfie A, Burn C, Henry W. Estimation of pulmonary artery pressure by pulsed Doppler echocardiography. Circulation. 1983;68:367.Google Scholar
  54. 54.
    Dabestani A, Mahan G, Gardin JM, Takenaka K, Burn C, Allfie A, et al. Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography. Am J Cardiol. 1987;59:662–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:268–76.PubMedCrossRefGoogle Scholar
  56. 56.
    Furuno Y, Nagamoto Y, Fujita M, Kaku T, Sakurai S, Kuroiwa A. Reflection as a cause of mid-systolic deceleration of pulmonary flow wave in dogs with acute pulmonary hypertension: comparison of pulmonary artery constriction with pulmonary embolization. Cardiovasc Res. 1991;25:118–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Torbicki A, Kurzyna M, Ciurzynski M, Prusazczyk P, Pancho P, Kuch-Wocial A, et al. Proximal pulmonary emboli modify right ventricular ejection pattern. Eur Respir J. 1999;13:616–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41:1021–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Opotowsky AR, Clair M, Afilalo J, Landzberg MJ, Waxman AB, Moko L, et al. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013.Google Scholar
  60. 60.
    Oh JK, Seward JB, Tajik AJ. The echo manual. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
  61. 61.
    Picano E, Pibarot P, Lancellotti P, Monin JL, Bonow RO. The emerging role of exercise testing and stress echocardiography in valvular heart disease. J Am Coll Cardiol. 2009;54:2251–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Gruenig E, Weissmann S, Ehlken N, Fijalkowska A, Fischer C, Fourme T, et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation. 2009;119:1747–57.CrossRefGoogle Scholar
  63. 63.
    • Gruenig E, Mereles D, Hildebrandt W, Swenson ER, Kuebler W, Kuecherer H, et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol. 2000;35:980–7. This study is of importance because it is the first report showing that asymptomatic gene carriers of familial primary pulmonary hypertension can be identified by their pathological pulmonary artery response to exercise, even before pulmonary artery pressure at rest is elevated.CrossRefGoogle Scholar
  64. 64.
    Gruenig E, Janssen B, Mereles D, Barth U, Borst MM, Vogt IR, et al. Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation. 2000;102:1145–50.CrossRefGoogle Scholar
  65. 65.
    Collins N, Bastian B, Quiqueree L, Jones C, Morgan R, Reeves G. Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: Pulmonary Hypertension Assessment and Screening Evaluation Using Stress Echocardiography (PHASE-I). Eur J Echocardiogr. 2006;7:439–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Alkotob ML, Soltani P, Sheatt MA, Katsetos MC, Rothfield N, Hager WD, et al. Reduced exercise capacity and stress-induced pulmonary hypertension in patients with sclerodermia. Chest. 2006;130:176–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Steen V, Chou M, Shanmugam V, Mathias M, Kuru T, Morrissey R. Exercise-induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest. 2008;134:146–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Moeller T, Brun H, Fredriksen PM, Holmstrøm H, Peersen K, Pettersen E, et al. Right ventricular systolic pressure response during exercise in adolescents born with atrial or ventricular septal defect. Am J Cardiol. 2010;105:1610–6.CrossRefGoogle Scholar
  69. 69.
    Kovacs G, Maier R, Aberer E, Brodmann M, Scheidl S, Hesse C, et al. Assessment of pulmonary arterial pressure during exercise in collagen vascular disease: echocardiography vs right-sided heart catheterization. Chest. 2010;138:270–8.PubMedCrossRefGoogle Scholar
  70. 70.
    D’Alto M, Ghio S, D’Andrea A, Pazzano AS, Argiento P, Camporotondo R, et al. Inappropriate exercise-induced increase in pulmonary artery pressure in patients with systemic sclerosis. Heart. 2011;97:112–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Racz H, Mehta S. Dyspnea due to pulmonary hypertension and interstitial lung disease in scleroderma: room for improvement in diagnosis and management. J Rheumatol. 2006;33:1723–5.PubMedGoogle Scholar
  72. 72.
    Matucci-Cerinic M, Steen V, Nash P, Hachulla E. The complexity of managing systemic sclerosis: screening and diagnosis. Rheumatology. 2009;48 Suppl 3:III8–III13.PubMedCrossRefGoogle Scholar
  73. 73.
    Kuwat SM, Taichman DB, Archer-Chicko CL, Palevsky HI, Kimmel SE. Hemodynamic and survival in patients with pulmonary arterial hypertension related to systemic sclerosis. Chest. 2003;123:344e50.Google Scholar
  74. 74.
    Hachulla E, Gressin V, Guillevin L, et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 2005;52:3792–800.PubMedCrossRefGoogle Scholar
  75. 75.
    Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol. 2005;288:L419–25.PubMedCrossRefGoogle Scholar
  76. 76.
    Bidart CM, Abbas AE, Parish JM, Chaliki HP, Moreno CA, Lester SJ. The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocardiogr. 2007;20:270–5.PubMedCrossRefGoogle Scholar
  77. 77.
    West JB. Left ventricular filling pressures during exercise: a cardiological blind spot? Chest. 1998;113:1695–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Bossone E, Rubenfire M, Bach DS, Ricciardi M, Armstrong WF. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33:1662–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Milan A, Magnino C, Veglio F. Echocardiographic indexes for the noninvasive evaluation of pulmonary hemodynamics. J Am Soc Echocardiogr. 2010;23:225–39.PubMedCrossRefGoogle Scholar
  80. 80.
    Hopkins SR, Schoene RB, Henderson WR, Spragg RG, Martin TR, West JB. Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med. 1997;155:1090–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Argiento P, Chesler N, Mulè M, D’Alto M, Bossone E, Unger P, et al. Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J. 2010;35:1273–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Gargani L, Pignone A, Agoston G, Moreo A, Capati E, Badano LP, et al. Clinical and echocardiographic correlations of exercise-induced pulmonary hypertension in systemic sclerosis: a multicenter study. Am Heart J. 2013;165:200–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Kovacs G, Maier R, Aberer E, Brodmann M, Graninger W, Kqiku X, et al. Pulmonary arterial hypertension therapy may be safe and effective in patients with systemic sclerosis and borderline pulmonary artery pressure. Arthritis Rheum. 2012;64:1257–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Codullo V, Caporali R, Cuomo G, Ghio S, D'Alto M, Fusetti C, et al. Stress Doppler echocardiography in systemic sclerosis: evidence for a role in the prediction of pulmonary hypertension. Arthritis Rheum. 2013. doi: 10.1002/art.38043.
  85. 85.
    Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.PubMedCrossRefGoogle Scholar
  86. 86.
    Sanz J, Dellegrottaglie S, Kariisa M, et al. Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol. 2007;100:731–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Freed BH, Gomberg-Maitland M, Chandra S, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:11.PubMedCrossRefGoogle Scholar
  88. 88.
    Ohno Y, Hatabu H, Murase K, et al. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging. 2004;20:353–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Ohno Y, Hatabu H, Murase K, et al. Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. Am J Roentgenol. 2007;188:48–56.CrossRefGoogle Scholar
  90. 90.
    Sanz J, Kuschnir P, Rius T, et al. Pulmonary arterial hypertension: noninvasive detection with phase-contrast MR imaging. Radiology. 2007;243:70–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Lankhaar JW, Westerhof N, Faes TJ, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291:H1731–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Nogami M, Ohno Y, Koyama H, et al. Utility of phase contrast MR imaging for assessment of pulmonary flow and pressure estimation in patients with pulmonary hypertension: comparison with right heart catheterization and echocardiography. J Magn Reson Imaging. 2009;30:973–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Iwasawa T. Diagnosis and management of pulmonary arterial hypertension using MR imaging. Magn Reson Med Sci. 2013;12:1–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Clinical Physiology, National Research CouncilPisaItaly

Personalised recommendations