Advertisement

Zeitschrift für Energiewirtschaft

, Volume 43, Issue 3, pp 193–212 | Cite as

An Improved Statistical Approach to Generation Shift Keys: Lessons Learned from an Analysis of the Austrian Control Zone

  • David SchönheitEmail author
Article
  • 16 Downloads

Abstract

During market coupling, trading of electricity across borders is subject to capacity limits, provided by transmission system operators. Flow-based market coupling is the preferred method of the EU for cross-border capacity calculations. It is part of the EU’s design for a single electricity market to maintain security of supply and achieve competitive energy prices while integrating growing shares of renewable energy to reach the reduction targets for greenhouse gas emissions. The algorithm of flow-based market coupling incorporates the physical restrictions of critical network elements during market clearing. For this, Generation Shift Keys are required to translate nodal into zonal information by predicting, which generating units participate in import-export balance changes. This analysis presents an improvement of an existing approach to Generation Shift Keys, further developed within a study for the Austrian transmission system operators, Austrian Power Grid. The proposed method allows for Generation Shift Key estimations based on regression analysis and actual dispatch decisions, decoupled from fixed power plant characteristics and merit-order assumptions. The unit selection process based on economic significance leads to statistically significant and robust Generation Shift Keys in the majority of cases. The results highlight the importance of computing time-dependent, but not necessarily hourly Generation Shift Keys and indicate a limited positive correlation between participation in zonal changes and power plant capacities. Both aspects confirm the purpose of the developed model’s flexible and data-based properties.

Keywords

International electricity trade Integration of renewable energy Day-ahead market coupling Cross-border capacity calculation Power generation dispatch Regression analysis 

Ein verbesserter statistischer Ansatz zur Berechnung von Generation Shift Keys: Erkenntnisse aus einer Studie für die Regelzone Österreichs

Zusammenfassung

Die Marktkopplung für den gebotszonenüberschreitenden Stromhandel unterliegt Kapazitätsrestriktionen, die von den Übertragungsnetzbetreibern bereitgestellt werden. Die flussbasierte Marktkopplung (flow-based) ist die bevorzugte Methodik der EU für die Berechnung von grenzüberschreitenden Kapazitäten. Sie ist Teil der europäischen Strommarktgestaltung für den Erhalt von Versorgungssicherheit und kostengünstigen Energiepreisen bei gleichzeitiger Integration wachsender Mengen erneuerbarer Energien zum Erreichen der Emissionsreduktionsziele für Treibhausgase. Während der Markträumung bezieht der Algorithmus der flussbasierten Marktkopplung die physischen Restriktionen kritischer Netzwerkelemente ein. Dafür sind Generation Shift Keys notwendig, die Knoten- in Zoneninformationen überführen, indem sie prognostizieren, welche Kraftwerke sich an Änderungen in der Nettoposition beteiligen. Die vorliegende Analyse stellt eine Verbesserung eines existierenden statistischen Ansatzes zur Berechnung von Generation Shift Keys vor, welche im Rahmen einer Studie für den österreichischen Übertragungsnetzbetreiber, Austrian Power Grid, weiterentwickelt wurde. Die beschriebene Methodik ermöglicht die Berechnung von Generation Shift Keys basierend auf Regressionsanalysen und tatsächlichen Kraftwerkseinsatzentscheidungen, losgelöst von konstanten Kraftwerksparametern und Merit-Order-Annahmen. Der Kraftwerksauswahl liegt eine ökonomische Signifikanzbetrachtung zugrunde, welche in den meisten Fällen zu statistisch signifikanten und robusten Generation Shift Keys führt. Die Ergebnisse verdeutlichen die Wichtigkeit der Berechnung von zeitabhängigen, aber nicht notwendigerweise stündlichen Generation Shift Keys und zeigen eine eingeschränkte positive Korrelation zwischen der Beteiligung an Nettopositionsänderungen und Kraftwerkskapazitäten. Beide Aspekte bestärken die flexiblen und datengetriebenen Eigenschaften des entwickelten Modells.

Ankündigung. Dieser Beitrag befasst sich mit der Weiterentwicklung eines statistischen Ansatzes zur Erstellung von Generation Shift Keys, die für die Berechnung von grenzüberschreitenden Kapazitäten im europäischen Stromhandel unter Berücksichtigung physischer Netzrestriktionen notwendig sind.

Notes

Acknowledgements

This analysis is largely based on a study conducted for and funded by Austrian Power Grid AG (APG), who provided all data. The author gratefully acknowledges valuable feedback from Dr. Maria Aigner, Hans Hatz and Milan Vukasovic (APG) as well as Prof. Dr. Dominik Möst (TU Dresden, Chair of Energy Economics) prior to the publication of this analysis.

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 50Hertz, Amprion, APG, Creos, ČEPS, ELES, Elia, HOPS, MAVIR, PSE, RTE, SEPS, TenneT, Transelectrica, TransnetBW (2017) Explanatory note DA FB CC methodology for Core CCR: For Public Consultation. https://consultations.entsoe.eu/markets/core-da-ccm/user_uploads/explanatory-note-for-core-da-fb-cc-public-consultation_fv.pdf. Accessed on 07.06.2019
  2. 50Hertz Amprion, TenneT, TransnetBW (2019) Grid Development Plan Electricity 2030, Version 2019: Second Draft by the Transmission System Operators (German document). https://www.netzentwicklungsplan.de/en/grid-development-plans/grid-development-plan-2030-2019. Accessed on 07.06.2019Google Scholar
  3. ACER (2016) Decision of the Agency for the Cooperation of Energy Regulators No 06/2016 of 17 November 2016: On the Electricity Transmission System Operators’ Proposal for the Determination of Capacity Calculation Regions. Agency for the Cooperation of Energy Regulators, https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Pages/Individual-decision.aspx. Accessed on 07.06.2019
  4. ACER (2019) Decision No 02/2019 of the Agency for the Cooperation of Energy Regulators of 21 February 2019: On the Core CCR TSOs’ proposals for the regional design of the day-ahead and intraday common capacity calculation methodologies. Agency for the Cooperation of Energy Regulators, https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Pages/Individual-decision.aspx. Accessed on 07.06.2019
  5. Amprion (2019) Amprion Market Report 2019 - Flow Based Market Coupling: Development of the Market and Grid Situation 2015-2018. https://www.amprion.net/Dokumente/Dialog/Downloads/Stellungnahmen/Amprion-Market-Report-2019.pdf. Accessed on 07.06.2019Google Scholar
  6. Amprion APX-ENDEX Belpex, Creos, Elia, EnBW, EPEX SPOT, RTE, TenneT (2011) CWE Enhanced Flow-Based MC feasibility report. https://www.epexspot.com/document/12597/CWE_FB-MC_feasibility_report.pdf. Accessed on 07.06.2019Google Scholar
  7. Amprion, APX, Belpex, Creos, Elia, EPEX SPOT, RTE, TenneT, TransnetBW (2014) Documentation of the CWE FB MC solution: As basis for the formal approval-request. https://www.cre.fr/en/Documents/Public-consultations/Flow-Based-Market-Coupling-FB-MC-and-its-implementation-in-the-CWE-region. Accessed on 07.06.2019
  8. Amprion, APG, Creos, Elia, RTE, TenneT, TransnetBW (2016) FRM forecasting study - NRA Deliverable No 45. Unpublished draftGoogle Scholar
  9. Andrews D (1991) Heteroskedasticity and Autocorrelation Consistent Covariant Matrix Estimation. Econometrica 59(3):817–858MathSciNetCrossRefGoogle Scholar
  10. Andrews DW, Monahan JC (1992) An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator. Econometrica: Journal of the Econometric Society pp 953–966,  https://doi.org/10.2307/2951574
  11. APG (2019) Market Transparency, Installed Power Plant Capacity 2016. https://www.apg.at/en/market/Markttransparenz/generation/installed-capacity. Accessed on 26.04.2019Google Scholar
  12. Van den Bergh K, Delarue E (2016) An improved method to calculate injection shift keys. Electr Power Syst Res 134:197–204CrossRefGoogle Scholar
  13. Van den Bergh K, Delarue E, D’haeseleer W (2014) DC power flow in unit commitment models. TME Working Paper - Energy and Environment WP EN2014-12. https://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wpen2014-12.pdf. Accessed on 25.05.2018Google Scholar
  14. Van den Bergh K, Boury J, Delarue E (2016) The Flow-Based Market Coupling in Central Western Europe: Concepts and Definitions. Electr J 29(1):24–29CrossRefGoogle Scholar
  15. Bucksteeg M, Trepper K, Weber C (2015) Impacts of renewables generation and demand patterns on net transfer capacity: implications for effectiveness of market splitting in germany. Iet Gener Transm Distribution 9(12):1510–1518CrossRefGoogle Scholar
  16. Consentec (2012) Begleitstudie zur Optimierung der Methodik zur Bestimmung von Generation Shift Keys zur Modellierung des Einspeiseverhaltens von Erzeugungseinheiten im Übertragungsnetz. Study Behalf. (50Hertz Transmission GmbH. Unpublished final report)Google Scholar
  17. Council of the European Union, European Parliament (2009) Regulation (EC) No 714/2009 of the European Parliament and of the Council of 13 July 2009 on conditions for access to the network for cross-border exchanges in electricity and repealing Regulation (EC) No 1228/2003. Official Journal of the European Union L 211:15–35, https://publications.europa.eu/s/kM2E. Accessed on 12.08.2019
  18. Council of the European Union, European Parliament (2019) Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity. Official Journal of the European Union L 158:54–124, http://data.europa.eu/eli/reg/2019/943/oj. Accessed on 12.08.2019
  19. Dahl DB (2016) xtable: Export Tables to LaTeX or HTML. https://CRAN.R-project.org/package=xtable, R package version 1.8‑2. Accessed on 26.04.2019
  20. (2019) Directorate-General for Energy (European Commission). Publications Office of the European Union, Clean energy for all Europeans. Luxembourg  https://doi.org/10.2833/21366
  21. Dowle M, Srinivasan A (2017) data.table: Extension of ‘data.frame‘. https://CRAN.R-project.org/package=data.table, R package version 1.10.4‑3. Accessed on 26.04.2019
  22. Energinetdk, Svenska Kraftnät, Fingrid, Statnett SF (2014) Methodology and Concepts for the Nordic Flow-Based Market Coupling Approach. https://www.fingrid.fi/globalassets/dokumentit/fi/tiedotteet/sahkomarkkinat/2015/methodology-and-concepts-for-the-nordic-flow-based-market-coupling-approach.pdf. Accessed on 07.06.2019
  23. European Commission (2015) Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management. Official Journal of the European Union L 197:24–72, https://publications.europa.eu/s/kM2F. Accessed on 07.06.2019
  24. Finck R, Ardone A, Fichtner W (2018) Impact of Flow-Based Market Coupling on Generator Dispatch in CEE Region. In: 2018 15th International Conference on the European Energy Market (EEM), IEEE, pp 1–5,  https://doi.org/10.1109/EEM.2018.8469927
  25. Gebrekiros Y, Doorman G, Preda T, Helseth A (2015) Assessment of PTDF based power system aggregation schemes. In, vol 2015. IEEE, Electrical Power and Energy Conference (EPEC), IEEE, pp 358–363  https://doi.org/10.1109/EPEC.2015.7379976 CrossRefGoogle Scholar
  26. Greene WH (2003) Econometric Analysis. Pearson Education Inc, Upper Saddle River, New JerseyGoogle Scholar
  27. Jegleim B (2015) Flow Based Market Coupling. Master’s thesis, NTNU. https://brage.bibsys.no/xmlui/handle/11250/2368078. Accessed on 20.04.2019Google Scholar
  28. Kaplan J (2018) fastDummies: Fast Creation of Dummy (Binary) Columns and Rows from Categorical Variables. https://CRAN.R-project.org/package=fastDummies, R package version 1.2.0. Accessed on 26.04.2019
  29. Kassambara A (2018) ggpubr: ’ggplot2’ Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr, R package version 0.2. Accessed on 26.04.2019
  30. Kennedy P (2008) A Guide to Econometrics, 6E. Blackwell Publishing, Malden, USAGoogle Scholar
  31. Lee MY (2016) On the Durbin-Watson statistic based on a Z‑test in large samples. IJCEE 6(1):114–121CrossRefGoogle Scholar
  32. Lesnoff, M, Lancelot, R (2012) aod: Analysis of Overdispersed Data. https://cran.r-project.org/package=aod, R package version 1.3.1. Accessed on 26.04.2019
  33. Marien A, Luickx P, Tirez A, Woitrin D (2013) Importance of design parameters on flowbased market coupling implementation. In: 2013 10th International Conference on the European Energy Market (EEM), IEEE, pp 1–8,  https://doi.org/10.1109/EEM.2013.6607298
  34. Matthes B, Spieker C, Rehtanz C (2017) Flow-based parameter determination in large-scale electric power transmission systems. In, vol 2017. IEEE, Manchester PowerTech, IEEE, pp 1–6  https://doi.org/10.1109/PTC.2017.7981216 CrossRefGoogle Scholar
  35. Neuwirth E (2014) RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer, R package version 1.1‑2. Accessed on 26.04.2019
  36. Newey WK, West KD (1987) A Simple, Positive-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55(3):703–708MathSciNetCrossRefGoogle Scholar
  37. Newey WK, West KD (1994) Automatic Lag Selection in Covariance Matrix Estimation. Rev Econ Stud 61(4):631–653MathSciNetCrossRefGoogle Scholar
  38. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  39. Schönheit D, Sikora R (2018) A Statistical Approach to Generation Shift Keys. In: 2018 15th International Conference on the European Energy Market (EEM), IEEE, pp 1–6,  https://doi.org/10.1109/EEM.2018.8469900
  40. Sebestyén M, Divenyi D, Sőrés P (2018) An Enhanced Calculation Method of Generation Shift Keys in Flow Based Market Coupling. In: 2018 15th International Conference on the European Energy Market (EEM), IEEE, pp 1–5,  https://doi.org/10.1109/EEM.2018.8469923
  41. Slowikowski K (2018) ggrepel: Automatically Position Non-Overlapping Text Labels with ’ggplot2’. https://CRAN.R-project.org/package=ggrepel, R package version 0.8.0. Accessed on 26.04.2019
  42. Svarstad VB (2016) Flow based market clearing-GSK strategies. Master’s thesis, NTNU. https://brage.bibsys.no/xmlui/handle/11250/2413290. Accessed on 20.04.2019Google Scholar
  43. Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org. Accessed on 26.04.2019CrossRefGoogle Scholar
  44. Wickham H (2011) The Split-Apply-Combine Strategy for Data Analysis. J Stat Soft 40(1):1–29MathSciNetCrossRefGoogle Scholar
  45. Zeileis A (2004) Econometric Computing with HC and HAC Covariance Matrix Estimators. J Stat Soft.  https://doi.org/10.18637/jss.v011.i10 CrossRefGoogle Scholar
  46. Zeileis A (2006) Object-Oriented Computation of Sandwich Estimators. J Stat Soft 16(9):1–16CrossRefGoogle Scholar
  47. Zeileis A, Hothorn T (2002) Diagnostic Checking in Regression Relationships. R News 2(3):7–10. https://CRAN.R-project.org/doc/Rnews/. Accessed on 26.04.2019Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Energy EconomicsTechnische Universität DresdenDresdenGermany

Personalised recommendations